N\N\OW /AEERA, LI LNEAR Five Years Out

TECHNOLOGY

SOCfit

SoC Software Lab Instructions

Version 14.0 09/29/2014 Tutorial
Table of Contents
OVERVIEW. ... esesssssssssss s sssssssss s ssessssssssssessessessessssssnes 2
MODULE 1: Getting Started............cccounmnernenmsmesmesssssssesnessessessessssenns 4
1.1 Acquiring the ArrowW SOCKIL.......c.coeiiiiiiiie e 4
1.2 Download the Altera Design SOFtWAre...........cccerieririeiinniensense e 5
1.3 Install the Altera Design SOFtWANEcccceieriiriiniiiiee e 8
1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW lab) 13
1.5 DoWNI0ad PUTTY oottt 13
1.6 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop) 14
1.7 Configure the Serial Terminal for the Labs (Complete this at the Workshop) 17
1.8 Preparing the SD Card........ccoccoiviiiieie i 18
MODULE 2: Examine the System Design.........c.coccrmunsesensenns 19
2.1 SYStem AICHITECIUIE ...ocvveeeeii et nee s 19
2.2 Examine the Cyclone V SOCKIL.......ccoieiiiiiniieine e 20
MODULE 3: Generate, Build and Run the Preloader ... 21
3.1 Generate the PrelOader ... s 22
3.2 BUld the Prel0ader.........c.cooiiiieiiiiiicsneeee s 25
3.3 Download a hardware image to the FPGAccooeviivivvieeie e 27
3.4 Launch DS-5 Embedded Development Suite & Import the Preloader project 29
3.5 Create a Debug Configuration for the Preloader project...........ccocvevevvnnnne 32
3.6 Step through and then Run the Preloader projectccccoovvniieeiiencnnn. 36
MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS) 41
4.1 Validate the FPGA Peripherals from DS-5cccccoocvivviviineies e, 42
4.2 Validate the FPGA Peripherals from a simple Linux Application............... 46
4.3 Validate the FPGA Peripherals using Linux Device Drivers (Modules).... 51
4.4 Examine the Device Tree BIOD (DTB) ...ccvcoevvviviveie e 54
MODULE 5: Taking the Next Step.........cummmmmsssssssssssssssssssssssssesssssssssens 59
MODULE 6: Cross Triggering (Do at home EXErcise).......coumemmessessssssessessessssssens 60
6.1 Configure Cross Triggering onthe HPS..........ccocoeveiii i 61
6.2 Configure Cross Triggering onthe FPGA.........cccooeiii i 65
6.3 Cross Triggering EXamples:ccoevviieiieieie s 67
SoCKit SW Lab Instructions, Version 14.0 1

N\OW AGERA, LY LNEAR Five Years Out

OVERVIEW

OVERVIEW

The Altera SoC combines a Hard Processing System (HPS) and an FPGA on a single device. The HPS has dual core ARM
Cortex-A9 MPUs and a host of peripherals such as DDR3 controllers, Ethernet MACs, SPI controllers and many more. The
FPGA portion of the device is tightly coupled through high performance bridges to the HPS. The designer can add peripherals
they create or third party IP to the FPGA and map it into the HPS. Thus you have a flexible and very powerful solution.

This software lab aims to answer to following questions that a developer might have:

How do | build and debug software to boot my custom HPS configuration?

How do | map the FPGA peripherals into the HPS memory map?

How do | address the individual registers within these peripherals?

How does my host OS know which peripherals have been added and which device drivers to load?

The HPS is configured using Qsys, Altera's FPGA IP integration tool. Configuration includes selecting DDR memory,
determining clock frequencies and selecting which HPS peripherals your design will use. As such Qsys inherently has most of
the information to satisfy the questions asked above. Quartus is also used to define the HPS peripheral pin outs.

These two Altera FPGA development tools will generate the files needed for the transfer of design information from the
hardware to the software domain. A significant portion of the software modules will use these handoff files to build a
preloader, to examine the system register set (including FPGA registers) and lastly to follow the path of the Device Tree from
the .sopcinfo file to the Device Drivers in Linux.

Module Summary:

The Software labs are based on the Golden Hardware Reference Design (GHRD) that is provided with the SoCKit. You will
examine the architecture of the GHRD in Module 2.

In Module 3 you will learn how to create, build and run a custom preloader that will be used to boot a high level operating
system.

In Module 4 you will see how to incrementally validate the peripherals created in the FPGA. First you will use the extended
HPS register set (including those from FPGA peripherals) to read and write to those FPGA peripherals from the DS-5 debugger.
Then you will see how to access them from a Linux application and finally how to address them from Linux device drivers.

SoCKit SW Lab Instructions, Version 14.0 2

NA\OW /AB[ERYA, L7TLE|DEO'}B Five Years Out

OVERVIEW

Module 6 is a bonus lab that shows how to cross trigger during debug between the CPU and FPGA domains.

Hardware to software domain transfer:

The diagram below shows three main areas of transfer from the hardware to software domains.

1. The files necessary to create a custom preloader

2. The .svd file that describes the FPGA peripherals and is used by the DS-5 register function

3. The sopcinfo file that describes all of the HPS devices selected in Qsys and those custom peripherals added in the FPGA.
These are used to build a device tree. The device tree is used by the Linux kernel to determine which device drivers to load at
boot time.

Handoff
files

Y

e Preloader
= R DS-5
ACDS
Debugger

— —— DeviceTree ,
W Generator Device Tree
For 5
SoC EDS H e
(=, B

SoCKit SW Lab Instructions, Version 14.0 3

N\NOW /AOERA, L LNEAR Five Years Out

Getting Started

MODULE 1: Getting Started

Your first objective is to ensure that you have all of the items needed and to install the tools so that you are ready to create
and run your design.

List of Required ltems:

Arrow Electronics SoCKit evaluation board

Quartus Il v14.0 Stand-alone Programmer

Altera SoC EDS v14.0

PuTTY terminal emulator

Computer with Windows 7, 4 GB RAM, minimum of I3 core and over 10 GB free hard disk space for the Quartus Il
install

e Lab Design Files

1.1 Acquiring the Arrow SoCKit

To order a SoCKit please click on the link below

Order an SoCKit from Arrow Electronics

SoCKit SW Lab Instructions, Version 14.0 4

N\NOW /AOERA, L LNEAR Five Years Out

http://components.arrow.com/part/search/sockit?region=na

Getting Started

1.2 Download the Altera Design Software

You will need to install the following design software packages:

e SoC Embedded Design Suite (EDS) v14.0

The Programming Software can be downloaded from the Altera web site.

e Go to the Altera Download web page at https://www.altera.com/download/dnl-index.jsp

e Select the Download button next to the Quartus Il Web Edition

Get the complete suite of Altera design tools

Latest Release: Quartus II Version

14.0

S

Quartus IT Subscription Edition
Paid license required

The industry's #1 design software
in performance and productivity.
Free 30 day trial

(¥ oowriont

Quartus IT Web Edition

FREE, no license required

A FREE, no license required version
of Quartus® II software for your
CPLD or medium-density FPGA.

IP available for purchase

» Download

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

5

Five Years Out

https://www.altera.com/download/dnl-index.jsp

Getting Started

Quartus Il Web Edition

Home > Support > Downloads > Quartus II Web Edition

Release date: June, 2014

Latest Release: v14.0 \\Q
Select releas \\.

QUARTUS*H
i r
Operating System 6 ¥ Windows © /\-\ Linux

Download Method ekamai DLM3 Download Manager 0 © Direct Download
v The Quartus 11 software version 14.0 supports the following device families: Arria 1I, Arria V, Cyclone IV, Cyclone
V, MAX II, MAX V, Stratix IV, and Stratix V. +~ More

———

Individual Files mnddiﬁonal Software
[

e Navigate down to Additional Software . Check the two selections shown below.
e Press the Download Selected Files button.

P select all
[|Add-0On Software

[]DSP Builder
Size: 66.2 MB MD5: 617B44CFCS1FEIEF3191E520280902C9

[JQuartus II Help
Size: 356.0 MB MD5: DODESS71AODBEDAAB44EF14CS5ECBS90DE

@tand—ﬁlune Software

[JFLEXIm License Server Software
Size: 7.8 MB MD5: 85ED3B581BDS7A029D229BABF73ER204

[[JINEYe
Size: 1580.6 ME MD5: 4E37870B85F9654C4228F660B07460F7

[]Quartus II Programmer and Tuulse
Size: 213.7 MB MD5: SES0506511B9F312BDAFSDCO82CT 2006

uC Embedded Design Suite (EDS)
Size: 1.7 GB MD5: 0AL2FBY7803AA0B56011838B63582A551

4" Download Selected Files |

SoCKit SW Lab Instructions, Version 14.0 6

N\NOW /AOERA, L LNEAR Five Years Out

Getting Started

e Login to myAltera account at https://www.altera.com/myaltera/mal-index.jsp
e Use your existing login, or Create Your myAltera account.

myAltera Account Sign In

Home >

User Name
Forgot Your User Name or Password?

Password

Remember me

[Signin]

Don’t have an account?

- Create Your myAltera Account
Your myAltera account allows you to file a service request, register for a class, download software, and

more,

Enter your email address.

(If your email address already exists in our system we will retrieve the associated information.)
st Accont

e The next page of the installation will look like:
e Verify the selections shown below.
e The download of the selected files will begin once you have chosen a folder to save them in.

Download In Progress. (1 of 2 files)

Total Download Size = 1.89GB Download Speed = 348.05KBps
Remaining Size = 1.8GB Estimated Time Remaining = 1h, 30m

Download Location = C:/Users/a08473/Downloads/Altera/14.0WE

Downloading bundle
Total Progress 72.34%

QuartusProgrammerSetup-14.0.0.200-windows.exe (2 of 2):
44.69%

—_— 0

e If you are using Internet Explorer it may block the download. Click the options bar to allow the
download

Lﬂ, To help protect your security, Internet Explorer blocked this site from downloading files to your computer, Click here for options...

SoCKit SW Lab Instructions, Version 14.0 7

N\NOW /AOERA, L LNEAR Five Years Out

https://www.altera.com/myaltera/mal-index.jsp

Getting Started

1.3 Install the Altera Design Software

e Obtain a 30-day evaluation license for SoC EDS Subscription Edition by clicking the activation code link
below.

http://ds.arm.com/altera/altera-eval-edition/

e You will be provided with an activation code. Use this code when prompted by the ARM licensing
manager.

2. License with Activation Code Altera Evaluation Edition
,Activation Code

Start ARM Development Studio 5 and open the license manager. If this is your first ime
using Development Studio, then a popup dialog will automatically ask you if you wish to open
the license manager, otherwise it can be opened from the "Help" menu.

Choose "Add License...", and enter your Activation Code displayed on this page to obtain a
license.

Woark through the wizard fo select the Host ID to lock your license to, and enter or create your
ARM account details. Activation Code

Once complete, the license manager can be closed as the product is ready to use.

e Start the SoC EDS Installation. Double Click the SOCEDSSetup-14.0.0.200-windows.exe file that was
downloaded.
e Accept the license agreement and use all the default settings and locations for installation

e Install the drivers and DS-5. Use all the defaults. If you are notified that you should restart Windows,
please ignore this and continue.
15/ ARM DS-5 Setup [E=H{E=l ==

ARM Welcome to the ARM DS-5 Setup Wizard

The Setup Wizard will install ARM DS-5 on your computer,
Click Mext to continue or Cancel to exit the Setup Wizard.

| Back [Mewt [Cancel

SoCKit SW Lab Instructions, Version 14.0 8

N\NOW /AOERA, L LNEAR Five Years Out

http://ds.arm.com/altera/altera-eval-edition/

Getting Started

D5-5 Driver Installation Wizard

Installation Wizard

The drivers were successfully installed on this computer.

came with instructions, please read them first.

You have completed the DS-5 Driver

“You can now connect your device to this computer. f your device

=] = =

) ARM D5-5 Setup

ARM

Installation of ARM DS-5 is
Complete.

Click the Finish button to exit the Setup Wizard.

Driver Name Status

~* ARM Ltd (WinUSB) USB... Readytouse
“’ ARM Ltd (WinUSB) USB... Readytouse
“ ARM Ltd (usbser) Ports ... Readytouse

|am |

»

< Back

Launch release notes Back Cancel

Install the 30 day DS-5 Altera Edition license

e Launch DS-5. Start --> All Programs --> ARM DS-5 --> Eclipse for DS-5
e A Workspace Launcher window will ask you to select a workspace.

e Press OK to select the default

e You will see a "No Licenses Found" Window. Select Open License Manager

= Mo Licenses Found

Py

k- !

Use the ARM License Manager to obtain and add licenses. You can open the ARM
License Manager at any time from the Eclipse Help menu.

ARM D5-5 is license managed, but there are no registered licenses.

Ignore

[| Open License Manager... | J

e Press the Add License Button in the ARM License Manager

= ARM License Manager

View and edit licenses

Add or delete licenses below. Select a license to view more information about

it.

 Add License...

Delete License

Select the toolkit that you intend to use:

Mo toolkits available

®

SoCKit SW Lab Instructions, Version 14.0

N\NOW /AO[ERYA,

Close

9

Five Years Out

Getting Started

Please be aware that the license will expire 30 days after you perform the next step.

e Enter the activation code that you received earlier. Press the Next Button.

= Add License o [S

Obtain a new license

Select the type of license to create for this computer

nter a senal number or activation code to obtain a license:

Serial numbery | -

1 Use an existing license file or licen

() Generate 30-day evaluation license

() Manually obtain a license via www.arm.com website

ﬁ
® < Back QI Mext > D| Finish | ’ Cancel
g ———

e Use the pull down menu to select a host ID. Press the Next button.

= Add License = [S
Choose host ID
Choose a host ID that the license will be locked to

Choose a host ID that the license will be locked to. It is recommended that you choose a host ID that represents a
physical device on your computer. If you choose a virtual device, then your license will not work if the ID of the
device changes in the future,

Host IT: [D0EQ4CO0059E - Intel(R) 82577LM Gigabit Metwork Connection [- v] ’

@ [< Back lla’ Einish | [Cancel l

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

Altera Evaluation Edition
)Activation Code

Activation Code

10

‘ Five Years Out

Getting Started

e Enter your ARM account email address and password.

e If you do not have an account then click on the link to create one.
e Press the Finish button.

= Add License o[BS
Developer account details

Enter the ARM developer (Silver) account details

Enter account details:

"‘!mail: skravatsky@arrow.com "\

ssword: | sessssesss|

Forgot passwo

Don't have an account? Click here to create one.

@j Next > [Cancel]

= ARM License Manager @

View and edit licenses

Add or delete licenses below. Select a license to view more information about
it.

v D5-5 Professional (30-day Evaluation).lic

Add License...

Delete License

i

This license is stored in:

ChUsers\al8473 AppDatatRoaming ARMADS-5\licenses directory
Wi h 5 sofarancad frrmme e

Select the toolkit that you intend to use:
AR DS5 M

@

SoCKit SW Lab Instructions, Version 14.0 11

AN\NOW AVO[ERYA), L7|—|”EN2 ‘FiveYears Out

TECHNOLOGY

Getting Started

Use git to clone the Linux source files. You must be connected to the internet to implement this step. You will need these
source files when you attempt the optional cross triggering exercise in Module 6.

e Open the Embedded Command Shell

r

— -y e g SR g — iy |

@le » LF4844 » Local Disk (C:) » altera » 14.0SE » embedded »

Organize ¥ g] Open Print Burn New folder

~

altera Name
140 host_tools
embedded ip

@5 Embedded_Command_Shell.bat

e Change directory to c:\altera\14.0\embedded\embeddedsw\socfpga\sources
e Type source ./git_clone.sh.Press Enter.

Please note that this can take up to an hour to complete

% cd "cisalterasld.Bwembedded~embeddedswssocfpgassources"

% .Agit_clone.sh
+ git clone http:/ git.rockethoards.orgslinux—socfpga.git
Cloning into * linux—socfpga® ...

SoCKit SW Lab Instructions, Version 14.0 12

NA\OW /AB[ERYA, L7LJ“%B Five Years Out

Getting Started

1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW lab)

e Create a folder c:\altera_trn on your PC.
e Click on the following link to download SoCKIT_Materials_14.0.zip

e Save it to c:\altera_trn on your PC
e Extract the SoCKIT_Materials_14.0.zip file to this folder

1, SoCKIT_Materials.zip 5/15/20131) 1) Bxtract Compressed (Zipped) Folders
Open
Open in new window Select a Destination and Extract F

.m s will be extracted to this fo
WinZi 3
2 . _ C:\altera_trn\J
Open with 3 |

e The c:\altera_trn directory should look like this

—_ i e e,

@Q@?g? b Local Disk (C) » altera__trlD

Eile Edit View Tools Help

Organize + = Open ~ Burn Mew folder

~
it Mame

J SoCkit

| SoCkit
1) SoCKIT_Materials.zip

| readme. et

T 50C_HW_Lab 131.pdf

FL 50C_SW_Lab_13.1.pdf
1) SoCKIT_Materials.zip

1.5 Download PuTTY

e Download PuTTY by clicking on this link: Download PuUTTY here
o No installation is required. Move the .exe file to a convenient location that will be easily accessible during
the lab.

SoCKit SW Lab Instructions, Version 14.0 13

N\NOW /AOERA, L LNEAR Five Years Out

http://www.rocketboards.org/pub/Documentation/ArrowSoCKitEvaluationBoard/SoCKIT_Materials_14.0.zip
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Getting Started

1.6 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop)

Please connect cables to the connectors shown in the diagram below. All cables are provided in your SoCKit.

e Connect the micro USB cable to the USB host connector on your laptop and to the USB Blaster Il connector

on the SoCKit.

e Connect the second micro USB cable to the second USB host connector on your laptop and to the UART

connector on the SoCKit.

e Connect the Ethernet cable to the Ethernet connector on your laptop and to the Ethernet connector on the

SoCKit.

e Connect the Power Supply to the Power connector on the SoCKit.

USB Blaster Il UART Ethernet

' 60 INTEGRATE l t

L

-

=-
=L ,J_'_t
EEE.

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

14

‘ Five Years Out

Getting Started

There are a few jumpers that require configuring before proceeding with the labs.
e BOOTSEL[2..0] jumpers. These should be configured as "100" to select boot from SD card 3.3V

e CLKSEL[1..0] jumpers. These should be configured as "00" for the slowest HPS peripheral clock speed
option.

Please ensure that the jumpers are configured as indicated below.

SoCKit SW Lab Instructions, Version 14.0 15

N\NOW /AOERA, L LNEAR Five Years Out

Getting Started

Modify the default MSEL bit settings. The board needs to be set to configure in the FPPx32, fast, compressed mode.
This will allow u-boot to configure the FPGA.

e SW6 is located on the bottom side of the SoCKit.
e Please change MSEL[0:4] to 01010.

Verify that the JTAG chain is correctly configured. The JTAG chain switch is located in to the right of the green audio

connector.
e HSMC_EN should be disabled (left position) and the HPS_EN should be enabled (right position).
y - D)
i L x
HSMC_EN /% e
HPS_EN ~ JTAG CHAIN SW
SoCKit SW Lab Instructions, Version 14.0 16

N\NOW /AOERA, L LNEAR Five Years Out

Getting Started

1.7 Configure the Serial Terminal for the Labs (Complete this at the Workshop)

Caution:

Do not continue until you have done the following:

e Eject the SD card before you power the board on.
e Turn your SoCKit on.
e Verify the USB to UART COM Port. Open the Device Manager

Control Panel (32) =y Device Manager

953 Devices and Printers File Action View Help
=e = S =
- Search Everywhere I:> <:EI E:> | |_u | E _|n | h

[device <] [Shatdowmi]in) ‘ 4 73 Ports (COM & LPT)

e Open PUTTY and configure it for Serial, 115200 baud, COMxx. Press Open

@ PuTTY Configuration @
Category:
I Session Basic options for your PuTTY session
L I..og‘ging Specify the destination you want to connect to # COML5 - PuTTY
eminal
Segallioe peed
Bl Comis_> 115200
i - Features Connection type
©Window Raw @ Tehet ® Rogin © 55H
- Apnearance Load, save or delete a stored session
i i~ Behaviour
Translation Saved Sessions
- Selection I:>
[CD‘D!‘H Default Settings - | Load |
=~ Connection altera soc dev kit R
- Data altera_soc_kit_with_log L
Prasy ametek_aik T | favs |
ametek_scm
N Te\nt.at amow soc dev kit | Belels |
- Rlogin amow soc dev kit_13.1 s
- 55H
- Seral Close window on exit:
Always Never @) Only on clean exit
About | | Help @) Cancel
—_d

You may Proceed

SoCKit SW Lab Instructions, Version 14.0 17

NA\OW /AB[ERYA, L7LJ“%B Five Years Out

Getting Started

1.8 Preparing the SD Card

If you have purchased the SoCKit then your kit will most likely not contain an imaged SD card. The SD card is used to boot the
Linux system and is used in a number of the Modules.

Please follow the links below to the Rocketboards.org web page that will provide step by step instructions on how to do so.

Creating an SD Card using a Windows Host

Creating an SD Card using a Linux Host

CONGRATULATIONSI!

You have just completed all the setup and installation requirements and are now ready to examine the
system-level design.

SoCKit SW Lab Instructions, Version 14.0 18

NA\OW /AB[ERYA, L7T|-E|DEO'}B Five Years Out

http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard140LinuxGettingStarted#Creating_an_SD_Card_using_a_Windows_Host
http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard140LinuxGettingStarted#Creating_an_SD_Card_using_a_Linux_Host

Examine the System Design

Module Objective

MODULE 2: Examine the System Design

In this module you will review the architecture of the design that was created in Qsys. You will also examine the layout of the

SoCKit.

21 System Architecture

There are many
components on the SoCKit
that can be used, including
the LCD, flash, Audio DACs,
and IR.

The system was created in

QSys using a standard

library of re-useable IP

blocks. The orange section

of this diagram is the HPS
section, while the green
section is the FPGA section.
The HPS section was
configured in the HPS
component in Qsys. There
are three bridges between
the HPS and FPGA sections.
You will focus on

peripherals connected to

the LWHPS2FPGA bridge
and for this lab, specifically,
the LED PIO. They are
mapped through the

bridge into the HPS
addressable map.

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

Hard Processor System
ARM A9 ARM A9
Is D$ 5 | DS Ll
L2 1
TMC/Trace asPl
uUsB OTG GPIO
Gb Ethemst ROM FC
SD/MMC UART
NAND Flash RAM 64KB CAM
Timers
FPGA Manager
DM,
HSP2FPGA LWHPS2FPGA FPGAZHPS
[M] [M] [S5]
fabrie A
SysiD S [
= E"q m
Onchip RAM PIOLED [S|e JTAG Master
PIO Button [S [s TAG
—r
PIO DIPSW [5] -
M
Intermupt Capturer JTAG PR Virual TAG TAP
Masmer [S e] e
19
Five Years Out

Examine the System Design

2.2 Examine the Cyclone V SoCKit

Examine the components on the Cyclone V SoCKit:

Video Out
(VGA)

USB-Blaster II Uart

Ethemet Audio
10/100/1000 I..ine-In: Li.ne-Out, Mic-In

FPGA DDR3 il HPS Boot

‘, bl-l '] l':
of * Puis . ﬁ
LTC :
Expansion HSMC Type
Connector LI
FPGA Config
OSPI 256 Mb
Bitmap
Display
CLKSEL &~ , : |
BOOTSEL . iheind gl 288 AN AR B
Jumpers }
& ./
~ Wamm HPS Buttons FPGA Switches & e
reset LEDs
Cold HPS Switches & FPGA Buttons
reset LEDs
Note: The micro SD connector and the configuration DIP switch are located on the reverse side of the board.
CONGRATULATIONS!
You have just completed the examination of the system-level design
SoCKit SW Lab Instructions, Version 14.0 20

N\NOW /AOERA, L LNEAR Five Years Out

Generate, Build and Run the Preloader

MODULE 3: Generate, Build and Run the Preloader

In this section we will examine the path from the Handoff files through to the
creation of the preloader as shown in the graphic on the right.

The preloader, also known as the spl or u-boot-spl (second program loader)
is essential to being able to boot an operating system on an Applications
class processor, such as a Cortex A-9.

The steps for booting an Application Class Processor include the following

1. The Boot ROM is run from power on reset or warm reset. It's only function
is to read the BOOTSEL and CLKSEL settings and read the preloader from an
appropriate source such as SD, QSPI or NAND flash.

2. The preloader is copied from the source to On Chip RAM (64K limit) and
executed. Its main functions are to set the appropriate clocks for the
processors and peripherals by manipulating the PLLs and setting up pin
muxing required to route selected peripheral controllers to 10 pins. It also
sets the DDR memory controller parameters and calibrates the memory.
When this is complete it will load the boot loader (in our case u-boot) from
the external boot source to DDR and start its execution..

3. U-Boot will load the kernel and the device tree blob into memory from the
boot source. It will launch the kernel and pass the dtb contents to it.

The Altera SoC is unique among Applications Class Processing solutions
because the user can customize and add to the peripheral set attached to it
by modifying the FPGA. All SoC customization is implemented by the user in
the Qsys tool. This customization is passed to the software domain in the
form of isw handoff files. These files are used by the BSP Editor to generate
the preloader source files.

The first barrier to success that you will experience when you initially power
up your own custom SoC based board will be to get the preloader to run.
Being able to use the DS-5 Development suite and step through code will
give you insight into what is functioning on your board and what might be
causing a problem. It could be very helpful in uncovering any board level
hardware issues.

In this module you will do the following
1. Generate the preloader using the BSP Editor

2. Build the preloader
3. Step thru the preloader using the ARM DS-5 development suite.

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

Handoff
files

[wosssn P
[AwBesin |

Preloader
Generator

Preloader

=

.svd

Debugge
DeviceTree
= =

SoC EDS H

D;vice Tr@
==t

For
Linux

BootROM

Stored in on-chipROM

T

~

Preloader
Stored in flash, runs
SDRAM

from

-

T

r

U-Boot
Stored in flash, runs
SDRAM

from

.

¥

\

Linux Kernel
Stored in flash/network, runs

from SDRAM

J

T

Run Applicat

ion

21

Five Years Out

Generate, Build and Run the Preloader

31 Generate the Preloader

Use the ISW handoff files and the BSP Editor to generate the customized source code for the preloader.
1. Open the Embedded Command Shell
Navigate to the embedded install directory for the SoC EDS and launch the Embedded Command Shell

e Browse to <Install Directory>\embedded and select the Embedded_Command_Shell.bat file
e Double click the file to launch the shell

——

K9\ /€ L8t » Local Disk (C) » altera » 140 » embedded » >

Organize * Include in library « Share with + Burn Mew folder
B Desktop 0 Mame
4 Downloads .
drivers
°| Recent Places
ds-5

Altera_Stuff

)) ds-5_installer
Altera_Stuff Device Architectures

embeddedsw
gdesigns_13_1_customers \
examples
arrow_projects host f \
ost_tools
altera_price_list_Q2 14)
12

embedded 13 1

€[] Embedded_Cormmand_Shell.bat -
embedded_14 0 ~ = =

|| embedded_command_shell.sh

gdesigns_13_1_examples
|| enw.sh

m

gdesigns_14_0_sxamples

_a N o

2. Launch the BSP Editor

=] version.bd

o At the Command prompt type "bsp-editor" and press the enter key.

B -~ ESEER™X"

S bzsp-editor_

SoCKit SW Lab Instructions, Version 14.0 22

AN\OW AOERA, L LNEAR Five Years Out

-

Generate, Build and Run the Preloader

3. Create a new BSP

e Select File --> New BSP to create a new BSP

- BSP Editor

E] Help

Mew B@N
COpen... Ctrl+0
Save Ctrl+5
Save As... Wersion:
Exit Ctrl+X
Information | Problems | Processing
[

4. Indicate the location of the Preloader Settings Directory

This directory contains the xml files that Quartus / Qsys has generated. They describe the customized peripheral and

DDR settings for the SoC.

e Pressthe [| buttonto navigate to the directory, then press Open

- BSP Editor

File Help

Main

SOPC Information file:
CPU name:

Operating system:
BSP target directory:

= New BSP

Information | Problems I Processing

@ Initizlizing BSP components...

@ Finished initializing BSP componen|
@ searching for BSP components wi

Hardware

Preloader settings directory:

-

I =] Subversion
3 E Videos

SoCKit SW Lab Instructions, Version 14.0

ANV RVATTERAWEY @ 4

I

TITETT

LINEAR

TECHNOLOGY

Software - Open
Lookin: | . soc_system_hps_0 - T rER
B Desktop o
= 6 |F4344
"‘"} a Local Disk (C:) E
By Recent Ttems | altera_trn
| SoCkit
- | SoCkit_SW_lab_14.0
o .. hps_isw_handoff
Desktop
H
My Documents
—
A
LF4544
.
“ File name: s0Ckit_SW _|ab_14.0'hps_isw_handoffisoc_system_hps_0
Network . r
Files of type: | preloader settings directory - Cancel

23

‘ Five Years Out

Generate, Build and Run the Preloader

5. Generate the preloader

e Press OK to create the BSP settings file and directory

[2 MNew BSP l&]
Hardware
Preloader settings directory: | Z:\altera_trn\SoCkit\SoCkit_SW _lab_14.0%ps_isw_handoffisoc_system_hps_0
Software
Operating system: :Preloader - Version: :default -
Use default locations
BSP target g C:haltera_trn\SoCkit\SoCkit_SW_|ab_14.0'\software\spl_bsp
BSP Settings Cihaltera_trn\SoCkit\SoCkit_SW _|ab_14.0\software\spl_bsp\settings.bsj
Enable Settings File relative paths
[Enable Additional Tel script
Additional Td script:
CK Cancel

G-l

» LF4844 » Local Disk (C:) » altera_trn » SoClkit |

Organize « Include in library =

. hps_isw_handoff
. output_files
. soc_system
software
. configurations
. led_blink
. spl_bsp

Share with +

0 Name

|| settings.bsp

Note the default location of the created preloader project directory is \software\spl_bsp

e Press the Generate button to generate the preloader source and makefile

e Press Exit once generation is complete.

- Generating BSP - BSP Editor - Caltera_trm\SoCkit\SoCkit_SW_lab_14.0\software\spl_bsp\settings.bsp

Fie Hep

Main

SOPC Information file:

CPU name:
Operating system: Preloader Version: | default =
BSP target directory: .\
E-Settings A|| spl
=} o
sl ~ Generating BSP [
- ~PRELOADER_TGZ
. :~CROSS_COMPLE Generating BSP | " |
ol e D

Close
Information | problems | Processing|

(@ Searching for BSP components with category: =
(@ Generated file "C:\altera_trn\SoCkit\SoCkit_SW_lab_14.0\software spl_bsplsettings.bsp™
(@ Td message: Reading preloader settings dir: C:'\altera_trn\SoCkit\SoCkit_SW_lab_14.0\ps_isw_handoffisoc_system_hps_0"

—
< Generate j Exit

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

—

———— . —

@'\J'L . » L4344 » Local Disk (C) » alteratm » SoCkit » S
LY B o~

Organize «

% Open -

J SoCkit_SW_lab_14.0

. hc_output
J hps_isw_handoff
J output_files
. soc_system
. software
. configurations
J led_blink
. spl_bsp

Burn MNew folder
i MName
. generated
| Makefile

| “| preloader.ds
|| settings.bsp

“| uboot.ds

24

Five Years Out

Generate, Build and Run the Preloader

Take note of the generated sub-directory. The custom HPS information contained in the xml files have been
converted into c header files that can be implemented when the preloader runs. A (1) next to a peripheral (in the
pinmux_config.h file) indicates that its controllers output signals will be routed to the appropriate pins on the HPS
portion of the SoC. The preloader will use this information when it runs the pinmux routine.

ffifndef PRELOADER PINMUX CONFIG H
#define PRELOADER PINMUX CONFIG H_

#define CONFIG_HPS_EMACO (0)
#define CONFIG HPS EMACL (1)

- .
. fdefine CONFIG HPS USEO (0)
8)+ » LF4844 » Local Disk (C:) » altera_trn » SoCkit » SoCkit_SW_lab_14.0 fdefine CONFIG HPS USB1 (1
S —_ —_
— #define CONFIG_HPS_NAND (0)
Organize « % Open » Burn Mew folder #define CONFIG_HPS_SDMMC (1)
SoCkit_SW _lab_14.0 - Narme - #def:!_ne CONFIG HPS_QSPI (1)
#define CONFIG HPS URRTO (1)
hc_output . — —

. sdram fdefine CONFIG HPS UART1 (0)
hps_isw_handoff buildh #define CONFIG_HPS_TRACE (0)
output files . ' fdefine CONFIG HPS I2C0 (0)
| iocsr_config_cycloned.c Fdof — — 201 1

soc_system CONFIG HPS IZC
= iocsr_config_cyclone5.h e :!_ne — - (1)
software e : #define CONFIG_HPS_IZ2C2 (0)
configurations L pinmuz_configh #define CONFIG_HPS_I2C3 (0)
P10, | pinmux_config_cyclone.c fdefine CONFIG HPS SPIMO (1)
|} | pll_config.h #define CONFIG_HPS SPIM1 (1)
spl_bsp [reset_configh fdefine CONFIG_HPS SPISO (0)
genersted #define CONFIG_HPS_SPIS1 (0)

fdefine CONFIG HPS CENO (0)
#define CONFIG_HPS CAN1 (0)

3.2 Build the Preloader

The preloader can be built from within the Embedded Command Shell

o (D to the preloader project directory within the shell

B /cygdrive/c/altera_trn/SoCkit/SoCkit_SW_lab_14.0/software/spl_bsp Lo

Altera Embedded Command Shell

Version 14.8

o Type "make" at the prompt and press enter

SoCKit SW Lab Instructions, Version 14.0 25

NA\OW /AB[ERYA, L7L—Jﬂ%g Five Years Out

Generate, Build and Run the Preloader

B fcygdrive/cfaltera_trn/SoCkit/SoCkit_SW_lab_14.0/scftware/spl_bsp

~SoCkit_SW_lab_14_8~zoftware~spl_hsp"

seygdrivescsalterasl4.B5E/embeddedhost_toolssalteraspreloader-uhoot—soc
fpga.tar.g=

A tar file which contains a template of standard source files for the preloader is being copied from the SoC EDS install
directory. The custom source files are in the generated sub-directory.

The preloader will take a few minutes to build. An examination of the preloader project directory after completion shows the
project contents. The preloader ELF file resides in the \software\spl_bsp\uboot-socfpga\spl directory.

oot—sp

hin

jpl._bi

s

make [21:

mkpimage

ga-spls B& arm—altera—eahi-1d
.Br/sof twares/spl_bhspsuboot—socf pgassplru—hoot
xt BxFFFFBAAA arch- armn/cpu/armnu?/
u?.0 arch/arm/cpusarmu?/socfpgaslibsocfpga.o am
socfpyaslibsocfpga.o hnal-d/altel-a/ﬂocfpga/ﬂdl-am/l hsocfpga—sdran.o common/libcomn|
mon.o commons/spls1lib:

Leaving d
1_h:

BN /cygdrive/c/altera_trn/SoCkit/SoCkit_SW_lab_14.0/scftware/spl_bsp

-T scygdrivescs. ltela _trn/SoCkit -8
lds ——gc-sections

e
SuC]ut SU lab 14 B
era_trn/SoCkit SoCl

SU lah 14

ocf pga/°

/uboot—: ul:fpga
preloader—mkpimage .bin uboot—socfpgassplsu—hoot
a/sp:_l/u—hu ot—spl.bin uhoot—socfpgarsspl u—hoot—spl.hin uboot-socfpgaspl/u—hoot—s

n

software
configurations
led_blink
4 spl_bsp
generated
4 uboot-socfpga
api
arch
board
common
disk
doc
drivers
dts
examples
fs
include
lib
LOG
nand_spl
net
post
spl

SoCKit SW Lab Instructions, Version 14.0

N\ROW

-

[AOTSRYA,

Name

arch
board
commaen
disk
drivers
fs

lib

spl

L | .depend

| .gitignore

| Makefile

2] u-boot.lst

__| u-boot-spl
| u-boot-spl.bin
|| u-boot-splids

| u-boot-spl.map

LY LN

art.o — a1

of twaresspl_|

up arch/arm/cpusarmu?/libarn|

hsarm/lihs1ibarn.o bhoard-/altera/|

pl.o drivers/dmaslibdma.o drivers/nmc/libmnc.o drivers/seri]
alslibserial.o drivers watchdogslibwatchdog.o libslibgeneric.o ——en
rivescraltera_trn/BoCkit/BoCkit_SW_
rchsarmslibseabi_compat.o -L c: 7alts
l’hbaremetalsbhin/. . lib/gcc/arm—alte .

group ~cygd]

s l/u—buut—spl /cyg(h 1ue/|:/a1t

Date modified

6/13/2014 2:29

hs /uhuut—sucfuga/..pl/u hoot—spl.
ctory ’/cygdl ivercraltera_trnsS8oCkit 8oCkit_SYW_lab_14.8-sof

sof

1.bin uboot-socfpy]

aAM

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
DEPEND File
GITIGMORE File
File

LST File

File

BIN File
LDS File
MAP File

Size

0KE
1KB
6 KB
0KB
440 KB
36 KB
1KB
84 KB

26

‘ Five Years Out

Generate, Build and Run the Preloader

3.3 Download a hardware image to the FPGA
Before you continue please ensure the following:
e The SD card is still in the ejected position
e The SoCKit is still powered on

e Launch the Quartus Programmer.

. Altera 14.0.0.200
. Quartus Il Programmer and Tools 1¢

Quartus 114.0 Programmer
[Quartus1114.0 SignalTap II
__| Quartus 114.0 System Console
&® Uninstall Quartus II Programmet
. SoC Embedded Design Suite (EDS)1 ~

1 Back

“3:‘:":” programs and files je ‘

e |s the USB-Blaster Il visible in the Hardware Setup window ? If not, press “Hardware Setup” and select CV

SoCKit so that it populates the currently selected hardware line. Press Close

e Press the Auto Detect button to detect the JTAG chain.

\w Quartus I 32-bit Programmer - [Chainl.cdf]
File Edit View Processing Tools Window Help 57

_3 Hardware Setup.. & CV SoCKit [USE-1] Mode: [JTAG

[Enable real-time ISP to allow background programming (for MAX 1T and MAX V devices)

File Device Checksum
1t Start

@ Stop

e Select the 5CSXFC6 device.
w Select Device M‘

Found devices with shared JTAG ID for device 1. Please select your device.
() 5CSEBAS

() SCSEBASES

() SCSEMAG

(©) SCSTFDEDS

() 5CSXFCSCE
5CSXFCECEES

ECSXFCGDG

() SCSXFCEDBES

-OK
_/
4

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

Usercode

27

Five Years Out

Generate, Build and Run the Preloader

e Two devices are discovered. The first is the HPS section of the SoC. The second is the FPGA portion of the SoC

% Quartus I 32-bit Programemer - [Chainl.cdf]*
File Edit Wiew Processing Tools Window Help =

2, Hardware Setup...| CV SoCKit [USE-1] Mode: [ITAG -

[Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

File Device Checksum Usercode
i Start
<nonez SCSXFCaDEES 00000000 <none
i Stop
<nane SOCVHPS 00000000 <None
3l Auto Detect /
{ Deete HPS FPGA

e Select the 5CSXFC6D6 for rev D kits or 5CSXFCED6ES for earlier revisions. Press the Change File button.
e Navigate to the "output files" sub-directory. Select the "soc_system.sof" file and press the Open button.

Help'5 Search altera.com @

£, Hardware Setup... | CV SoCKit [USB-1] Mode: [ITAG ~| Progress: []

[] Enable real-time I5F to allow background programming (for MAX II and MAX V devices)

o File Device Checksum Usercode Program, Verify Blank- Examine
il Start Configure Check
g st <none SCSXFCeDa 00000000 <nonex
o <naone SOCVHPS 00000000 <none
Auto Detect r
% Select New Programming File u
3L Delete)
m Lock in: | Cilaltera_trn\SoCkit\SoCkit_SW _lab_14.0\output_files QO O [F [
——] k My Computer MName Size Type Date Modified
‘l"b' Change File... |} 7.1MB ’ [
e | |3 R 208473 || soc_system.saf . sof File 7172014 11:01:45 AM
| save File B
— i
[2F Add Device... File name: |soc_system.sof ([Open I)
o Up Files of type: [Prograrnming Files (*.zof = pof *.jam *.jbc *.ekp *.jic) -] [Cancel]
[LI E — =

e Check the Program / Configure box. Press the Start button. Wait till progress is at 100%.

A Quartus 132-bit Programmer - [Chainl..cdf]* oo =]

File Edit View Processing Tools Window Help = Search altera.com @

:, Hardware Setup...| CV SoCKit [USB-1] Mode: | JTAG hd Prmrem’

Enable real-time ISP to allow background programming (for MAX IT and MAX V devices)

3 File Device Chedksum Usercode Program/ Verify Blank- Examine
1 Start Configure Check
C:faltera_trn/SoCkit/SeC... SCSXFCEDSF31CEES 0294DFFD 0294DFFD &:-:-:-
<none SOCVHPS 00000000 <none

gl Auto Detect

SoCKit SW Lab Instructions, Version 14.0 28

AN\NOW AVO[ERYA), L7|—|”EN2 ‘FiveYears Out

TECHNOLOGY

Generate, Build and Run the Preloader

3.4 Launch DS-5 Embedded Development Suite & Import the Preloader project

1. Launch DS-5 from the Embedded Command Shell

Note: It is possible to launch DS-5 from the Windows Start button. Do NOT do this since the preloader project
makefile requires that it be executed within a cygwin environment (the Embedded Command Shell).

o Type "eclipse" at the Embedded Command Shell prompt and press enter

mkpimage -—o preloader—mkpimage . =P i
assplsu—hoot—spl.bhin uhoot—socfpgasspl u— huut— pl hln uboot—= ucfpga/uplfu hoot—=
pl.hin

€ eclip=cd

e Please wait for a few seconds while DS-5 starts up

2. Initialize Eclipse workspace

When Eclipse first launches it is a good idea to select a specific workspace. It is useful to have a separate Eclipse
workspace associated with each set of hps_isw_handoff files.

o Eclipse will request that you select a workspace

e Pressthe [o= | button to select a workspace directory.

o Navigate to the SoCKit_SW_lab_14.0 directory.

e Press the| MkeNewroder | hutton and enter "hps_workspace". Press OK.
e Press OK. The DS-5 will shutdown and reload in the new workspace.
e Close the "Welcome to DS-5" tab

SoCKit SW Lab Instructions, Version 14.0 29

ANN\OW AGERA, L LNEAR Five Years Out

Generate, Build and Run the Preloader

& C/C++ - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
[mifhd B g-a8~d-&- AL ER A A I N . B
{5 Project Ex 22 | Streamlin | Select Workspace Directory @ ==
Select the workspace directory to use.
| e
! 4 | SoCkit_SW_lab_14.0 -

 he_output =
> hps_isw_handoff i

. hps_workspace

Corowse. D

J output_files

Eolder: New folder

Cancel
L Make New Folder (0K } Cancel l I

. hps_isw_handoff

.| hps_workspace

. software

Folder: New folder

e o)

Locatic

e (Close the default "Welcome to DS-5" tab

= C/C++ - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run

#2 Welcome to DS-@

ARM

Welcome to ARM® DS-5™

Window Help

ARM Development Studio (DS-5) is a professional software development solution for Linux-basec

bare-metal embedded systems, covering all stages in development from boot code and kernel |
to application debug and performance analysis.

The workbench is the main development environment where you can manage individual projec
associated sub-folders, and source files. It uses a single folder called a workspace to store file
folders related to specific projects. A typical workbench window contains one or more perspecti

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

LILIN ¥ ‘ Five Years Out

30

Generate, Build and Run the Preloader

3. Import the Preloader project

It is useful to import the preloader as a makefile project into the DS-5 environment. This allows the user to perform
source level debugging.

e Select File --> Import
e Navigate to C/C++ --> Existing Code as Makefile Project. Press Next
= Import

Select

Creates a new Makefile project in a directory containing existing code

Select an import source:

type filter text

- |22 General
4 [= C/C++
[€] C/C++ Executable
& C/C++ Project Settings
Existing Code as Makefile Project

e Enter "spl" for the Project Name
e Pressthe button. Navigate to the Code location. Press OK. Press Finish
= Import Existing Code ?@

Import Existing Code

Create a new Makefile project from existing code in that same directory

Project Mame
spl

Existing Code Location

- .
Browse For Folder @

Select root directory of existing code
4 | altera_trn &
4 5oCkit = -
= C/C++ - Eclipse Platform
J SoCkit_HW_Lab_14.0 -
File Edit Source Refactor MNavigate Search Project Run Windo
4 SoCkit_SW_lab_14.0
. hc_output =] 7 @ B g-&-[-@- 7
. hps_isw_handoff L Project Ex 3 |2 Streamlin =0
*) hps_workspace
| pe_worksp =%~
J output files ?
/| soc_system I:> “y == generated
4 | software > [uboot-socfpga
, configurations Makefile
| Jed blink D preloader.ds
@ & preloader-mkpimage.bin
|7 settings.bsp
* . generated i | ubootds
Folder: spl_bsp
)
SoCKit SW Lab Instructions, Version 14.0 K}

N\NOW /AOERA, L LNEAR Five Years Out

Generate, Build and Run the Preloader

3.5 Create a Debug Configuration for the Preloader project

1. Create a new Debug Configuration

The debug configuration specifies the logistics required to debug the preloader software project. Connectivity to the
SoCKit is selected here. DS-5 can be customized by using .ds scripts to perform initialization and setup functions
before debugging begins. This is also where the specific ELF file that will be source level debugged is specified.

e Select Run --> Debug Configurations
e Select DS-5 Debugger and press the "New Launch Configuration" button

-+l
@D xe®-
type filter text

[E] C/C++ Application
C/C++ Attach to Applic
pp
[E] C/C++ Postmortern Del

& | E/C++ Remote Applical
#% DS-5 Debugger

e Enter "spl" in the Name field
2. Setup the Connection to the Target board

e Click on the Connection tab. Select Cyclone V --> Bare Metal Debug --> Debug Cortex-A9_0 as the target.
e Click on the Target Connection pull down menu and select USB-Blaster.

ﬂame:

B~ Connection Hﬁ. Files| &5 Debugger % 05 Awareness | (- Arguments| B Environment

Select target

Select the manufacturer, board, project type and debug operation to use, Currently selected:
Altera / Cyclone V 50C (Dual Cere) / Bare Metal Debug / Debug Cortex-A9_0

> Arria V 50C

4 CycloneV SoC (Dual Core)

4 Bare Metal Debug

Debug Cortex-A2 0

Debug Cortex-A9_ 1
Debug Cortex-A%x2 SMP ik

m

The currently selected platform is Altera / Cyele

Target Connection

DTSL Options

DS-5 Debugger will connect to an Altera USB-Blaster te debug a bare metal application.

Configure USB-Blaster trace or other target options. Using "default” cenfiguration options

Connectiens

Bare Metal Debug | Connection ’

SoCKit SW Lab Instructions, Version 14.0 32

N\N\OW ATERA, L LNEAR ‘ Five Years Out

-

Generate, Build and Run the Preloader

Before you continue please ensure the following:

e The SD card is still in the ejected position
e The SoCKit is still powered on

e Click on the Browse button in the Connections --> Bare Metal Debug section.
e Wait a few seconds for the window to populate. Select the CV SoCKit and press the OK button.

= Select Debug Hardware @

™y CV SoCKit USB-1

1| i

Mame Deta

I
@ (| o |} cancel

3. Select the files necessary for Target debug

e Click on the Workspace button in the Files sub-section of the Files tab.

e Navigate to the spl_bsp --> uboot-socfpga --> spl directory and select the u-boot-spl elf file. This file contains

the obj code and the symbol tables for the preloader software project.

Mame: spl
o C : = B T - | = Open
= Connection |lisi Files w Debugger ()= Arguments
Select a file:
Target Configuration T =
S 4 1= spl_bsp
Application on host te download:
L] «project
L] project
I 1T & Makefile
File System... | | Works, Lead symbols
pacs ' (= generated
Files & preloader-mkpimage.bin
L] preloader.ds
Load symbels from file vJ 2] settings.bsp

4 [= uboot-socfpga

4 = spl
|Filq System..f | Workspace... = drivers
= lib

':] =" B
] _u-boot-spl 2

& u-boot-spl.bin

‘boards.depend

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

= [& s

(L}

= .
/!r Cancel

33

Five Years Out

Generate, Build and Run the Preloader

Note: Please verify that you have added "u-boot-spl" elf file to the Files section and NOT the Target Configuration section

e Press the button to add another file

Files

[Load symbols from file -

Stworkspace_loc:/spl_bsp/uboot-socfpga/spl/u-boot-spl}

[File System...] [Workspace...

e Click on the pulldown arrow and select "Add peripheral description files from directory".

e Press the File System button. Navigate to the soc_system sub-directory. Select it and press OK

Files

-

[Load symbols from file v] Browse For Folder

S{workspace_loc:/spl_bsp/uboot-socfpga/spl/u-bool

[File System... l [Workspace...

- 4 . altera_trn i
ILoad symbols from file ("], 4 |, SoCkit

Load symbols from file

. General info
. Installation Utils & Issues to Avoid
. Schematic & BOM
. SoCkit_HW_lab_13.1
4 | SoCkit_SW_lab_13.1
. hc_output

. hps_isw_handoff

. hps_workspace

—

fc_systerf_{_ A}

Folder: soc_system

Co)

Make New Foider C | cancel |

The SVD (System View Description) xml file is located in this directory. It was generated by Qsys and can be considered a
handoff file for software debug. This file provides the DS-5 with information regarding the peripheral sub-system that was
designed in the FPGA and connected to the HPS via the HPS2FPGA bridge. This will allow you to symbolically read or write to
these peripherals and they will be seen as an extension to the HPS peripheral listing in the peripheral window in DS-5.

SoCKit SW Lab Instructions, Version 14.0 34

N\NOW /AOERA, L LNEAR Five Years Out

Generate, Build and Run the Preloader

4. Configure the Debugger

e Click on the Debugger tab.
o Select the "Debug from entry point" pilot button.
e Check the "Run target initialization debugger script" box.

e Press the File System button and navigate to the "arrow_sockit_preloader.ds" script
e Press the Open button.
e Press the Debug button to start the debug session.

= Debug Configurations

Create, manage, and run configurations

@ A run script is required

& [T ET
RREER .S | = 5@ Narme: spl
type filter text =jc= Connection Files (%% Debugger . £ 05 Awareness | (9= Arguments | Bg Environment
[E] C/C++ Application -
[E] C/C++ Attach to Application Run contral i
[E] C/C++ Postmortem Debugger i L
(%) D (%) =
[£] C/C++ Remote Application Connect only ebug from entry point () Debug from symbol | main
#5 DS-5 Debugger un target initialization debugger script (.ds / .py)

5 spl (| File 5: stem... } | Workspace...
! B

@" Iron Python Run

& Tron Python unittest £ Open e . S—
] Java Applet ‘_ = System... | | Workspace...
[1] Java Application @l\,_,/l'| . v LF4844 » Local Disk (C:) » altera trn » SoCkit » SoCkit SW_lab 140 »
Ju JUnit — =
& Jython rur? Organize - Mew folder e
& Jython unittest
. -~
= Launch Group . SoCkit_SW_lab_14.0 i MName Date m
m PyDev Django " he_output
43 PyDev Google App Run b ion handoff . hc_output 7/19/20
r 1 s_1sw_hando e
@ Python Run RS | hps_isw_handoff 7/19/20
& Python unittest | hps_workspace s
[Z, Remote Java Applicatio output files . hps_workspace 1119/20
) - J output_files 7/19/20
. soc_system e Mo rkecrime b
_5Y | soc_system 7719726 5 stem... | | Workspace...
. software i
)) | software 7/19/20
J configurations L - -
' E @_socht_preloaderD 11,3042
J led_blink - —
| breakpoint.ds 11,/30/2
. . =nl hen ’ Apply] [Revert]
Filter matched 19 of 19 items . _ -
File name: arrow_sockit_preloader.ds IDS—S Debugger Scripts *.ds

Note: For more information on DS-5 scripts please click on the following link. Creating a debugger script file

SoCKit SW Lab Instructions, Version 14.0 35

N\NOW /AOERA, L LNEAR Five Years Out

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0446f/CIHDIBCA.html

Generate, Build and Run the Preloader

3.6 Step through and then Run the Preloader project

1. Add a ds breakpoint script
This script will conveniently add a few breakpoints that will assist in your exploration of the preloader code.

e Click on the Scripts tab
e Click on the Import Scripts icon 23
e Navigate to the breakpoint.ds script and press Open

B Commands iHistory L] B;) Vi "1@ 3 = 8

[\;) altera_target_check.py
[\;) arrow_sockit_preloader.ds

£ Open
el | . v LF4844 » Local Disk (C:) » altera_trn » SoCkit » SoCkit_5W_lat
Organize » Mew folder
4 | altera_trn o MName :
4 | SoCkit

J hc_output
) SoCkit_HW_Lab_14.0

: . hps_isw_handoff
4 | SoCkit_SW_lab_14.0

. hps_workspace

J hc_output X
i J output_files
. hps_isw_handoff
/| soc_system
. hps_workspace
| software

J output_files X
‘| arrow_sockit_preloader.ds

/| soc_system X
‘| breakpoint.ds
J software

e Select the breakpoint.ds script. Press Open.
e Pressthe B Execute Selected Scripts button. Notice the breakpoints tab.

B Commands | History |4 Scripts £2 =ﬂ=/ ® oy ©g Breakpoints 57 a0
anltera_ta rget_check.py
‘D?arrow_sockit_ reloader.ds <ﬁ==:> Linked: spl =

8 spl.c:230 @ board_init_r+0:x10 5:0xFFFF4454 [#6 T32 (Thumb]]
® spl.c:245 @ board_init_r+0x1E 5:0xFFFF4462 [#7 T32 (Thumb])]

reakpoint.ds

e Press the continue button B to start the debugger. The debugger will stop at the first breakpoint

SoCKit SW Lab Instructions, Version 14.0 36

N\NOW /AOERA, L LNEAR Five Years Out

Generate, Build and Run the Preloader

2. Explore the preloader code

As was discussed earlier the preloader is made up of standard code common to most system architecures and some
generated code based on the customized system entry in Qsys. The section of code that you will explore is specific for the
HPS, the DDR3 memory and peripherals that were specified in Qsys. Most of the board customization occurs in the
spl_board_init function. This customization includes setting the PLLs, the HPS memory controller registers, the HPS I/O banks
and implementing the necessary pin muxing.

B9238 spl_board_init();
231 #endif
233 boot_device = spl_boot_device();
234 debug("boot device - ¥d\n", boot_device);
235 switch (boot_dewvice) {

236 #ifdet CONFIG_SPL_RAM DEVICE
7 case BOOT_DEVICE RAM:
spl_ram_load_image();
239 break;
248 #endif
241 #ifdef CONFIG_SPL_MMC_SUPPORT

242 case T_REV MICL:
243 case T W [, :
244 case T W M
@245 spl_mmc_load image();
246 break;

When the board initialization is complete the code will stop at the next breakpoint, spl_mmc_load_image. At this point it has
examined the BOOTSEL jumper settings. It will attempt now to load the next loader from the SD card and run it out of DDR3
memory. At this point if the debugger becomes unstable and the next stage is unsuccessful, there is a good chance that the
settings for the memory controller need to be fine tuned.

o Press the the F5 key to enter the spl_board_init function

e Examine the code.

The flow diagram on the following page gives a good description of the order of operations taken to initialise the HPS. For
more details please visit the preloader rocketboards page at

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

Line 323 -402. Configure the main, peripheral and sdram PLL groups
Line 413 -420. 10 Bank pins are configured via HPS 1/O Scan chains. Freeze the 10 banks before beginning the scan operation

Line 433 - 436. Reset all peripherals and bridges except for the L4 watchdog.

SoCKit SW Lab Instructions, Version 14.0 37

N\NOW /AOERA, L LNEAR Five Years Out

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

Generate, Build and Run the Preloader

‘ Preloader entry (1) |

Low level initialization (1)

Reset the watch dog (2)

I

ECC pending for OCRAM (2)

l

Freeze all 1/O banks (3)

l

Reset all devices and bridges except watchdog
(3)

l

Reconfigure clock manager (3)

I

Configure 1/O buffer setting (IOCSR) through
scan manager (3)

I

Configure Pinmux (3)

I

De-assert reset for peripherals based on hand-
off (3)

l

Unfreeze all 1/O banks (3)

l

Setup UART console (3)

l

SORAM initialization and calibration (3)

|

Custom code can be added here (3)

Flash controller configuration (4)

l

Copy next stage boot loader image (U-Boot)
from flash to SORAM (4)

image at SDRAM
(5)

il

Stop and wait for
watchdog reset

Pass
*

Preloader writes valid to Preloader state register to
let Boot ROM know that Preloader ran successfully

(5)

.

Jump to next state boot)

loader (U-Boot) (5)

Functions & File Locations
No |Function File location
1 |_stant archfarm/cpufarmv7/start.S
2 |s_init() archfarm/cpu/armvi/socfpga/s-init.c
3 |spl_board_init{) archfarm/cpufarmv7/socfpga/spl.c

For SOMMC: drivers/mmc/spl, drivers/mmc/altera_dw_mmc.c

For QSPI: drivers/mtd/spifspi_spl_load.c, drivers/spi/

4 |cadence_gspi.c
For NAND: drivers/mtd/nand/nand_spl_simple.c, drivers/mtd/
nand/denali_nand.c

5 jump_to_image_no_args{) common/spl/spl.c

Setup & enable interrupt for OCRAM ECC &
SDRAM ECC {3)

SoCKit SW Lab Instructions, Version 14.0

ANV RVATTERAWEY @ 4

LINEAR

TECHNOLOGY

38

Five Years Out

Generate, Build and Run the Preloader

Line 447 - 449. Timer used during PLL reconfig

Line 460 - 464. Reconfigure the PLLs. Any board level issues related to clock inputs could result in a problem here. On the
SoCKit the HPS CLKO was double the specified frequency. Executing this step caused the system to hang. This provided a good
clue and the problem was resolved soon after.

Line 478. Handshake the bootloader.

Line 483 - 497. The Scan Manager configures the HPS 1/0 via the scan chain.

Line 525. The System Manager sets the appropriate pin muxing for the HPS peripherals that were selected in Qsys. Stepping
into this code will reveal that it uses the pinmux_config.h that was generated by the bsp-editor based on Qsys peripheral
selections.

Line 564 - 571. Unfreeze the HPS I/0 banks.

Line 581. Enable UART printing. The first line of code is printed to Putty from here.

Line 604. SDRAM Memory Manager initialization.

Line 613. SDRAM Calibration.

Line 673 - 696. Setup and enable exceptions.

3. Run the preloader code

e Press the the F7 key to step out of the spl_board_init function

e Examine the PUTTY console. You should see the following

" comé - puTTy ==

e Press the F8 (Continue key) to get to the breakpoint at line 245.

SoCKit SW Lab Instructions, Version 14.0 39

NA\OW /AB[ERYA, L7LJﬂ%B Five Years Out

Generate, Build and Run the Preloader

Read the following paragraph but DO NOT implement

The next logical step would be to insert the SD Card and press F8. The preloader would attempt to load U-Boot from the SD
card. It would first transition from running code out of Onchip RAM on the HPS to the DDR3 memory. If successful, you would
see the system boot U-Boot and Linux. Any instability in this process would possibly point towards memory timing issues.
Tuning of the memory timing in Qsys would be potentially required to resolve this.

However we will not do this since Module 4 requires DS-5 to still be connected to the target.

CONGRATULATIONS!!

You have generated, built and run the SoC preloader.

SoCKit SW Lab Instructions, Version 14.0 40

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS)

It is important to understand how the HPS and FPGA systems are combined into a common address map as seen by the ARM
Cortex A-9 MPU.

First examine the memory map of the SoC as seen by the Cortex A-9 MPU. FPGA slaves connected to the high bandwidth
HPS2FPGA bridge are mapped starting at 0xCO00 0000 (3GB). The Onchip RAM is connected to this bridge. This bridge has a
span of 960MB.

The HPS peripherals are mapped at 0xFC00 0000 with a 64MB address span.

The SysID, PIO LED, P10 Button and PIO DIPSW FPGA slaves are all connected to the low bandwidth LWHP2FPGA bridge. This
bridge is mapped within the HPS peripherals span starting at 0xFF20 0000. The span of this region is 2MB since it is only
required for control / status access.

HPS Address Space Relationships

4GB
Lightweight | Peripheral Region
Herd Processor HSP2FPGA LWHPS2FPGA FPGAZHPS 9 g,(d- E 2
System]] = FPGA
FPGA fabric Slaves FPGA
seD [5] Slaves
o 3 Regon
o = 368
i[5} oo
PIO DIPSW [S]
—— 2GB
SDRAM
M .
master |"Tionace e ey
---1GB
hps_0.h2f_Iw_axi_master
sysid_gsys.control_slave 0x0001_0000 - 0x0001_0007
hps_0.f2h_axi_slave
intr_capturer_0.avalon_slave_0 0GB
ftag_uart.avalon_jtag_slave 0x000Z_0000 — Ox000Z_0007
button_pio.s1 0x0001_00cO — 0x0001_ 0O0cf MPU
dipsw_pio.s1 0x0001_0080 - 0x0001_008F
led_pin.s1 0x0001_0040 — 0x0001_ O005£

The offset addresses of the FPGA slave peripherals relative to the base of the LWHPS2FPGA bridge are shown above.

So for example the LWHPS2FPGA bridge is mapped at OxFF20 0000. The LED PIO will be offset from that base by 0x0001 0040.
The resulting address for the LED PIO is OxFF21 0040.

SoCKit SW Lab Instructions, Version 14.0 4

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.1 Validate the FPGA Peripherals from DS-5

Use the DS-5 Debug perspective Register tab to manually peek and poke the control, status and data registers of the FPGA
peripherals that were defined in Qsys.

1. Use the Registers tab to access the FPGA peripherals.

The registers tab can be used to address all memory mapped entities within the HPS and the FPGA. It is a convenient way to
validate newly created FPGA peripherals.

e Select the Registers tab. Press the # expander adjacent to the Peripherals field to see a complete list.

4= Variables | 9 Breakpoints@ Y Expressions | f{) Functions
™ ol

Mame Value| Size| Access

+

= Care
= CP15
= VFP
= NEON

y

+

+

An incomplete list of peripherals is shown below. The peripherals that were added to the FPGA in the Qsys system are listed

as altera_avalon_<peripheral_name>. All other listings are standard HPS peripherals.

+ = acpidmap
+- = canl)

+ = canl

+ = clkmgr

+ (= dap

t = dmanonsecure
4 = dmasecure
+ = ermacl

4 = emacl

4 (= stm

- [= sysmgr

+ = uartd

H- 7= wartl

+

= ush0

+

= usbl

+

[altera_avalon_sysid_sysid_gsys_control_slave

+

(= altera_avalon_pio_led_pio_sl

+

(= altera_avalon_pio_dipsw_pio_s1
+ [altera_avalon_pic_button_pio_sl
+ (= altera_avalon_jtag_uart_jtag_uart_avalon_jtag_slave

SoCKit SW Lab Instructions, Version 14.0 42

NN\OW AEERA, L) LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

The FPGA list of peripherals is dependent on what was added to the Qsys system. This information is passed to the DS-5 via
the SVD xml file that Qsys generates. Recall that it was referenced in the Debug configuration setup in the Files section.

|Add peripheral description files from directory =

E| Chaltera_trn'SoCkithSoCkit_5W_lab_14.0hsoc_system

| File System... | |Wnrkspace...

Handoff
files

3

%_4 Preloader @
\0 Handoff Generator reloader
svd Debugger
= — || DeviceTree _
% Generator Device Tree

For 0
— ¥ — soc e0s [l e
==t -

2. Exercise the FPGA led_pio peripheral.

There are three bridges that connect the HPS and FPGA portion of the SoC. Two of them are meant for high bandwidth data
transactions (HPS2FPGA and FPGA2HPS). There is a third bridge (LWHPS2FPGA) that is intended as a control / status path for
the HPS into the FPGA. This bridge allows the HPS to separately control low bandwidth FPGA peripherals without interrupting
the flow of data on the high bandwidth paths.

These bridges are by default left in a reset state after power on and must be removed from this state.

SoCKit SW Lab Instructions, Version 14.0 43

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

View the Bridge Reset Status within the Reset Manager

e Navigate to the rstmgr peripheral and press the expander .
e Locate the rstmgr_brgmodrst register.
e Take note of its value

=F (= rstmgr
@ rstmgr_stat BxPE0REER0
@ rstmgr_ctrl Bx0a116610
@ rstmgr_counts Bx22052080
@ rstmgr_mpumodrst BxBBBBABA2
@ rstmgr_permodrst BxB13AESLS
@ rstmgr_perZmodrst BxBBORABFF
=+ @ rstmgr_brgmodrst Bx0ABBRGRE

When the preloader ran it detected that the FPGA was configured and thus released all three bridges from reset. You are

now able to access the FPGA peripherals.

Expand the LED_PIO peripheral.

The programming model for the LED PIO can be found in Chapter 12 of the Embedded Peripherals Users Guide.

The PIO is four bits. Each output bit is connected to an LED. A bit value of one will turn the LED on and a value of zero will

turn it off. The FPGA LEDS are located near the Altera and Linear Technology logos.

SoCKit SW Lab Instructions, Version 14.0 44

N\NOW /AOERA, L LNEAR Five Years Out

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Validating the FPGA Peripherals from the Hard Processor System (HPS)

e Navigate to the altera_avalon_pio_led_pio_s1 peripheral and press the # expander.

e Locate the altera_avalon_pio_led_pio_s1_DATA register.
e Type Fin the data field to turn all the LEDs on.

e Type 0in the data field to turn all the LEDs off.

e Type 1,2, 4 or 8to turnindividual LEDs on.

= = altera_avalon_pio_led_pio_sl
+ @ altera_avalon_pio_led_pio_s1_DATA BxB68888688 32 RAW

5. Use the HPS GPIO peripheral to turn on the HPS LEDs.

It also is possible to communicate with all HPS peripherals via the Registers tab. Four HPS LEDs are connected to GPIO pins
[56..53] . These map to bits [27..24] in HPS register gpiol. The four HPS LEDs are located to the left of the four FPGA LEDs.

Di3 A¥ LEDE
E23 >
GPIO56 C24 Hgg tEBg s T lmz HF/LE:E
gg:ggi G21 HPS LED1 I, e
224 =
GPIO53 HPS _LEDO S p1a n,-/gx_

e Navigate to the gpiol peripheral and press the # expander.

Locate the gpiol_gpio_swporta_ddr register. This is the data direction register. A gpio bit is an output if its
corresponding ddr bit is set to a one. Set the seventh nibble to an F. All four gpio connected to the LEDs are
now outputs.

Locate the gpiol_gpio_swporta_dr register. This is the data register. Change the data in the seventh nibble
of the data register to turn the LEDs on or off

Type 0 in the data field to turn all the LEDs off.

Type F in the data field to turn all the LEDs on.

Type 1,2, 4 or 8 to turn individual LEDs on.

=+ (= gpiol
+ @ gpiol_gpio_swporta_dr 0x200202000
+ @ gpiol_gpio_swporta_ddr ex@aeeeee

For more information on the GPIO, refer to the General-Purpose 1/0 Interface.
For more information on the HPS memory map refer to Address Map information for the HPS

SoCKit SW Lab Instructions, Version 14.0

N\N\OW ATERA, LT

45

LINEAR Five Years Out

TECHNOLOGY

http://www.altera.com/literature/hb/cyclone-v/cv_54022.pdf?GSA_pos=3&WT.oss_r=1&WT.oss=hps%20gpio
http://www.altera.com/literature/hb/cyclone-v/hps.html

Validating the FPGA Peripherals from the Hard Processor System (HPS)

e Stop. Do NOT turn off the power. You MUST first disconnect the DS-5 from the target and then remove all
connections for a clean session termination.

e Pressthe o] | leov 22~ p 00 & @ .2 55 "Disconnect from Target" button.

e Pressthe = | k'z-i '-@' S& | - hd | "Remove Connection" button.

e Exit DS-5. File --> Exit

4.2 Validate the FPGA Peripherals from a simple Linux Application

This section continues the philosophy of incrementally validating the FPGA peripherals that were added to the HPS in Qsys.
The FPGA peripherals will now be validated from within the Linux operating system by way of a simple Linux application.

Linux has a virtual addressing scheme, so the application has to acquire a virtual address that represents the physical
beginning of the HPS peripheral space. A simple application, " led_blink" was created as an example of how to validate FPGA
peripherals from within a Linux application. An examination of the code below shows the mapping function implemented.

#include "socal/alt_gpic.h"
#include "hps_0.h"

#define HW_REGS BASE (ALT_STM OFST)
#define HW_REGS SPAN (0x04000000)
$define HW_REGS MASK (HW REGS_SFAN — 1)

int main() {

wvold #*virtual base;
int f£d;

int loop_count;

int led direction;
uintg& t led state;

// map the address space for the LED registers into user space sSo we can interact with them.
f we'll actually map in the entire CSR span of the HPS since we want to access warious registers within that span
if((£fd = open("/dev/mem", (C_RDWR | O_SYNC))) == -1) {
intf{ "ERRCR: uld not n \"/dev/ WLLAm™ o) H H H
o o men ope =v/men . Provide the mmap function with HPS
peripheral base and span and it returns a
virtual base = mmap(NULL, HW REGS SPAN, (PROT_READ | PROT_WRITE), MAP SHARED, fd, HW_REGS BASE) Vlrtual mapplng Use thls Vlrtual base to
o address any peripherals with the HPS
if(wirtual base == MAF FAILED) { . .
printf(VERROR: mmap() failed...\n" }; space including those mapped through
close(fd); i
erozn(1) the LWHPS2FPGA bridge.
/f initialize the LEDs
/f set the direction of the HPS5 GPIC1 bits attached to LEDs to output
alt setbits word((virtual base + ((uint32 t) (ALT GPIOl SWPORTA DDR ADDR) & (uint32 t) (HW REGS MASK))), Ox0000F00Q };
/{ set the valus of the HPS GPIC1 bits attached to LEDs to CHE, turn OFF the LEDs
alt setbits word((virtuasl base + ((uint32 t) (ALT GPIOl SWPORTA DR ADDR) & (uint32 t)(HW REGS MASK))), Ox0000F00Q };
'/ set the walue of the FPGA PIOC bits attached to LEDs to COHE OFF the LEDs
alt setbits word((virtual base + ((uint32 t) (CRJRRUGJENGE Efi + LED PIO BASE) & (uwint32 t)(HW REGS MASK))), OxO000000F };

Once the mapping function has been called the virtual base is used to manipulate HPS and FPGA LEDs via their respective PIOs.
The memory map of the FPGA peripherals is provided in a header file (hps_0.h) that was generated by a utility called. sopc-
create-header. The alt_setbits and alt_clr_bits functions are used to turn the LEDs on and off.

This application can be either built in a cygwin shell in Windows or on a Linux Host. In this section you will build this

application within the cygwin shell, secure copy it to the target via ethernet and then execute it.

SoCKit SW Lab Instructions, Version 14.0 46

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

1. Connect the Linux target (SoCKit) to the laptop via Ethernet

Since here is no router available, you will directly connect the laptop to the target using the provided Ethernet cable.
We will provide the laptop and the target with fixed IP addresses. There is no need for a (Rx/Tx) crossover adaptor since most
modern Ethernet PHYs can perform the crossover internally.

Configure the laptop network adaptor.

e Type ncpa.cpl in the Windows search field. Press enter. Select the appropriate ethernet adaptor. Right click
and select Properties.

I j', Search Everywhere

.cpl]
| nepa.cpl| < |:> L‘I. Local Area Connection
-

Unidentified network

.
@ 4 7 Intel(R) 82577LM Gigabit Network...
o L | -‘u&‘_‘l

e Select Internet Protocol Version 4. Press Properties. Setup the IP address as shown below (192.168.2.13).

Press OK.
.,‘é. Local Area Connection Properties @
Networking | Sharing Internet Protocol Version 4 (TCP/IPv4) Properties @
Connect using: General

‘-'-.r Intel{R) 82577LM Gigahit Netwaork Connection You can get IP settings assigned automatically if your network supports

this capability. Otherwise, you need to ask your network administrator

for the appropriate IP settings.

This connection uses the following tems:) Obtain an TP address automatically
SODS Packet Scheduler - i
gF\Ie and Printer Sharing for Microsoft Networks

-4 HTC NDIS Protocol Driver

IP address: 192 . 168 . 2 . 13

-i- Intemet Protoco Subnet mask: 255 .255.255. O
3 Default gateway:
e ——— e
i Link-Layer Topolagy Diecovery Mapper /0 Driver | 4 |:>
i Link-Layer Topology Discovery Responder - Obtain DNS server address automatically

4 1 [} (@) Use the following DNS server addresses:

Install... Uninstal 1. Preferred DNS server:

Description Alternate DNS server:

Tranemission Control Protocol/Intemet Protocol. The default

wide area network protocol that provides communication Validate settings upon exit

across diverse interconnected networkes. Dva a5 L

) om)
-O K -Cancel

SoCKit SW Lab Instructions, Version 14.0 47

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Connect to the Linux target (SoCKit).

e Open PuTTY. Set it to Serial, 115200, COMxx

ﬁ PuTTY Configuration @
Category:
[=)- Session Basic options for your PuTTY session
-~ Logaing Specify the destination you want to connect to
[=)- Terminal .
- Keyboard 5 G Speed
el comty b
- Features Connection type:
£ Window O Raw () Telet © Rlogin) SSH
Aupea!ance Load, save or delete a stored session
- Behaviour
Translation Saved Sessions
- Selection
- Colours
Default Settings
[=)- Connection [ﬂ]
-~ Data Save
e
- Rlogin
- S5H
Seral Close window on exit:
() Mways () Mever @ Only on clean exit

)

3. Warm reset and boot Linux

o Insert the SD Card.
e Press the WARM_RST button. It is located on the bottom left corner of the SoCKit. See the snapshot below.

SoCKit SW Lab Instructions, Version 14.0 48

N\NOW /AOERA, L LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

e Wait for Linux to boot. Press enter at the terminal prompt and login as root.

e Create a password. It will be required later for the SCP (secure copy function). Type "passwd" and enter root
when prompted.

£P COML5 - PuTTY o] -E|]

Assign the target board a fixed IP address

e At the prompt type ifconfig eth0 192.168.2.12 up. Press enter.

E® COMIS - PuTTY

o Ping the host. Type ping 192.168.2.13. Press enter. Press Ctl C to abort ping.

B COMILS - PuTTY

4, Halt the 'scroll_server' led process and clear the leds

e At the prompt type ps and press enter to list all active processes
e Note the process ID (pid) listed next to /www/pages/cgi-bin/scroll_server
o Use the pid listed by ps. At the prompt type kill pid and press enter

e At the prompt type source ./clear_leds.sh and press enter

SoCKit SW Lab Instructions, Version 14.0 49

NA\OW /AB[ERYA, L7U”EAB Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

5. Build the "led_blink" example

e Open an Embedded Shell
e CDto c:\altera_trn\SoCKit\SoCKit_SW_lab_14.0\software\led_blink
e Type ./build_script.sh and press enter.

BN /cygdrive/c/altera_trn/SoCkit/SoCkit_SW_lab_14.0/software/led_blink | o e S|
¢ cd "C:twaltera_trn~SoCkit~SoCkit_SW_lab_14.B8=zoftware~led_blink"

¢ ./build_script.sh

+ arm—linux—gnueabihf-gcc —g -0 —Werror —Wall -IC:ralteras14.85E embedded~ip-al
terashpssaltera_hpsshwlibsinclude —o led_hlink main.c

¢ -

6. Use SCP to copy the executable to the target via Ethernet.

e Type scp led_blink root@192.168.2.12:/home/root. Press enter. This will take the local file "led_blink" and
securely copy it to the target at 192.168.2.12. It will place it in the /fhome/root folder.
e When prompted, type yes. Press enter.

e When prompted for a password, type root. Press enter.

% scp led_blink root®i92.168.2.12:/homesroot

The authenticity of host *192.168.2.12 (192.168.2.12>' can't he estahlished.
ECDSA key fingerprint is a2:56:3e:?8:hP:icf:ifdied:dl:dl:=?B:ab:Yd:6?:cd:%a.
Are you sure you want to continue connecting Cyes nol)¥ _

o Navigate back to the target console.
e Typels at the prompt.
o Change the permissions of led_blink. At the prompt type chmod 555 led_blink. Press enter.

7. Execute the led_blink application.

e Type ./led_blink at the target console prompt. Press enter. The LEDs will blink for a few seconds.

£ COM15 - PuTTY o[- E- | [wE3m)

SoCKit SW Lab Instructions, Version 14.0 50

NA\OW /AB[ERYA, L7U”EAB Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.3 Validate the FPGA Peripherals using Linux Device Drivers (Modules)

In this module you will run a few shell scripts. These scripts will turn the FPGA and HPS LEDs on and off. The difference in this
exercise is that there is no explicit reference to memory map addresses or bit locations. You will also install a module that
registers an interrupt and prints a message when that interrupt occurs

1. Examine the installed devices

All the drivers associated with LEDs and gpios are loaded with the linux kernel and when the gsrd_init.sh script is
loaded as part of the system initialisation at boot up.

e Bring the PUTTY console to the foreground. Type cd ~ . Press enter.

e Typels. Press enter. Examine the directory contents.

22 COMLT - PuTTY =R ==

e Type cd /sys/class/leds. Press enter. Type Is. Press enter.

Notice how each led (hps or fpga) now appears as an individual device. Take note of the naming syntax.

e Typecd~. Press enter.

28 COMIS - PuTTY = ===

SoCKit SW Lab Instructions, Version 14.0 51

NA\OW /AB[ERYA, L7U”EAB Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Run the led_blink_devices script
This script will blink all the fpga and hps LEDs.
e Type cat led_blink_devices.sh. Press enter. Examine the contents of the script.
Notice that the echo command is being used to pipe data to each individual led (fpga & hps). There is no knowledge of the
custom FPGA hardware that was created using Qsys. There is also no knowledge of the custom GPIO assignments that were
made for the HPS leds. In the next section you will examine how the driver gets this information from the Qsys system tool.
e Type source ./led_blink_devices.sh. Press enter.

3. Detect the user pushbutton

Install the gpio_interrupt module. The module is installed using the following syntax

modprobe gpio_interrupt gpio_number=<n>

GPIO numbers are automatically assigned by the kernel based on device tree entries. The GPIO number must be correlated
with its associated gpiochip in order to determine which interrupt is being asserted.

Examine all the available gpiochips's that are registered by the kernel.

e Type'ls /sys/class/gpio' at the prompt. Press enter.

£8 COMI7 - PuTTY = Ech <

Match the label of the GPIO chip to the address of push button and DIP switch in device tree

e Type 'cat /sys/class/gpio/gpiochip150/label' at the prompt. Press enter

SoCKit SW Lab Instructions, Version 14.0 52

NA\OW /AB[ERYA, L7L—Jﬂ%g Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

£ COM17 - PuTTY (o] @ |[==3m)

(= _button_pio PIO (Paralel /0)] 1‘ [‘J
ck Clock Input clk_0
reset Reset Input [ck]
sl Avalon Memory Mapped Slave [ck] M
external_connection Conduit button_pio_external_co...

Note that the offset address of the pushbutton (button_pio) in the FPGA match those of gpiochip150. A match has been
found.

Register gpiochip150 with the gpio_interrupt module in order to detect any pushbutton interrupts. Since there are two
pushbutton inputs in the button_pio component, gpio_numbers 150 and 151 are allocated to gpiochip150.

e Type 'modprobe gpio_interrupt gpio_number=150' at the prompt. Press enter.

&P COM17 - PuTTY (o @ |3

e Press the the pushbutton 0 on the SoCKit board to activate the interrupt

Remove the gpio_interrupt.

e Type 'rmmod gpio_interrupt' at the prompt. Press enter

£ COMLT - PuTTY =R =<

""'# aiiiiatel gplo 1nterruap
s
E

SoCKit SW Lab Instructions, Version 14.0 53

NA\OW /AB[ERYA, L7L—Jﬂ%g Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.4 Examine the Device Tree Blob (DTB)

This section focuses on the flow of system information from the .sopcinfo file to the Device Tree.

Handoff
files

& —— Preloader
\\. Handoff Preloader

Generator

X DS-5
) Debugger
2 Qsys L C}_- DeviceTree | :
.sopcinfo Generator Device Tree
For
— SoC EDS (o

The Device Tree standard specifies hardware connectivity so that Linux kernel can boot up correctly. For more on the
device tree click on this link Devicetree.org

 }

by

>

The diagram below shows the detailed connection from the Qsys system definition file (.sopcinfo) to the Device Tree
Source (DTYS) file, which is readable text, and finally to the Device Tree Blob (DTB) which is a binary format. The
DTB is placed in the FAT partition of the SD card and is read by U-Boot and placed in DDR3 memory. It is read by the

Linux kernel at boot time.
SD/MMC Unused
Bootioader (U-Boot) image ™

Preloader mage 3
Preloader Image 2
HW project Directory Preloader Image 1
iswinfo . Preloader Image 0

| hps_5esxl20f.qsys Device Device Tree Source DTS Urused
hps_5¢sx120f.sopcinfo Tree > Uinux file system

2 hps_Sesx120f_svd.xaml Compller
hps_cycloneV_5csx120f.qpf

' hps_cycloneV_5csx120f.qsf

(FPGA POF/SOF files, user data
can be stored in EXT2 fiesystem)

Generator

Unused

. hps_cycloneV_5csx120f sof S Operating System (Linux ulmage)
& | quartus.ini ’66 Devioe Tree Biob (Linux)

— (FPGA POF/SOF files, user data
«can be stored in FAT filesystem)

Space due to oyfinder setup

Board/User Info Booticader (11Boct)

setting

Master Boot Record (MBR)

Raw Partiton EXT2 parttion (Linux)
Custom Partition A2 FAT partition

SoCKit SW Lab Instructions, Version 14.0 54

N\NOW /AOERA, L LNEAR Five Years Out

http://devicetree.org/Main_Page

Validating the FPGA Peripherals from the Hard Processor System (HPS)

1. Examine the Device Tree Source (DTS)

Examine a section of the Device Tree Source file for the
SoCKit. This section describes the LEDs connected to
the FPGA and to the HPS.

As seen in Module 4.3 a high level device access
requires no specific hardware knowledge of that device.
That specific hardware knowledge is passed from the
HW design via the sopcinfo file and placed in the DTS
file. The kernel reads that information and passes it to
the specific module (device driver).

Examine fpga_led3 and hps_led3. The DTS entry for
fpga_led3 specifies that it is connected the LED_PIO
peripheral on bit 3. LED_PIO was added to the system
using Qsys in the HW lab section. The base address
offset for the LED_PIO is also specified in the DTS.

In the case of hps_led3 the DTS indicates that it is
connected to the GPIO pin that is driven by GPIO
register 1 on bit 24. The base address offset for GPIO
register 1 is also specified in the DTS.

Automatic generation of the DTS is now supported in
Quartus 1l 14.0.

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

soc_system.dts

leds |

compatible

fpgal {
gplos
lakbel

bi

fpgal |
gpios
label

bi

fpgaZ |
gpios
lakel

ki

fpga3 {
gplos
lakbel

bi

hps0 {
gpios
lakbel

bi

hpsl {
gpios
label

bi

hps2 {
gplios
lakbe=l

bi

hp=s3 {
gpios
lakbel

b

= "gpio-leds";

<&led pio O 1>;
"fpga led0";

<&led pio 1 1>;
"fpga ledl";

<gled pio 2 1>;
"fpga led2";

= <Eled_pio[£]l};
=|“fpga_led3“ﬂ

= "hps ledO";

"hps ledl”;

= <ghps 0 gpiol 25 1>;

= "hps led2";

= <&hp=s 0 |gpiol 24 |1>;

=|"hps_led3";

<&hps 0 gpiol 27 1>;

<ghps 0 gpiol 26 1>;

Five Years Out

55

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Examine the Device Tree Blob (DTB) in U-Boot

Reboot the SoCKit and halt U-Boot before it loads Linux

e Type poweroff. Press enter. Wait until you see "System halted"
e Press the WARM_RST button and then press any key (within 5 seconds) to halt U-Boot autoboot. The
WARM_RST button is located on the bottom left corner of the SoCKit. See the snapshot below.

Examine the contents of the SD card FAT partition.

o Type fatls mmc 0:1. Press enter. This displays the contents of the fat partition on the SD card.

SoCKit SW Lab Instructions, Version 14.0 56

NA\OW /AB[ERYA, L7LJ<“EOQQ Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

Load the Device Tree Blob into Memory.

e Type fatload mmc 0:1 0x100 soc_system.dtb. Press enter. This loads the DTB from the SD card and places it
in DDR3 memory at 0x100.

Examine the contents of the Device Tree Blob

o Type fdt addr 0x100. Press enter. This assigns 0x100 to the fdt system variable addr.

e Type fdt print. Press enter. This reads the binary DTB converts it to clear text and displays it. Wait for the
text to stop scrolling. The content on the display will now look familiar. This is exactly what the kernel will see
but in a binary format.

COMIS - PuTTY [- 3]

SoCKit SW Lab Instructions, Version 14.0 57

NN\OW AEERA, L) LNEAR Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Examine the Device Tree in Linux
The device tree can also be viewed from within Linux.

e Type bootd at the u-boot prompt. This will boot linux from the SD card.
e login as root
e Typels [proc/device-tree/sopc@0. Press Enter.

EP COMI1T - PuTTY o[-]

CONGRATULATIONS!
You have validated the FPGA peripherals

For more detailed information on how to build u-boot and Linux for the SoCKit please visit the Golden
System Reference Design (6SRD) page for the SoCKit on rocketboards.org

SoCKit SW Lab Instructions, Version 14.0 58

NA\OW /AB[ERYA, L7L—Jﬂ%g Five Years Out

http://www.rocketboards.org/foswiki/Documentation/GSRDUserManualArrowSoCKitEdition

Taking the Next Step

MODULE 5: Taking the Next Step

Altera has a number of resource available to assist you in further product development at www.altera.com/embedded

Some of the resources available are:

Visit the rocketboards.org community web site

http://www.rocketboards.org/foswiki

*EEE Start here ****

http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition

Arrow SoCKit Evaluation Board support site
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard

Altera SoC Development Board support site
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard

Get more information about the SoC HPS

Hard Processor System Technical Reference Manual
http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf

Get more information about the SoC Embedded Design Tools

Embedded Software for the Cortex-A9 MPCore Processor
http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html

Get additional SoC training (discounted from $695 per course to $99 for workshop attendees)

Designing with an ARM based SoC
http://www.altera.com/education/training/courses/ISOC101

Developing Software for an ARM based SoC
http://www.altera.com/education/training/courses/ISOC102

For all resources visit www.altera.com/embedded

SoCKit SW Lab Instructions, Version 14.0 59

NA\OW /AB[ERYA, L7T|-E|DEO'}B Five Years Out

http://www.altera.com/embedded
http://www.rocketboards.org/foswiki
http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html
http://www.altera.com/education/training/courses/ISOC101
http://www.altera.com/education/training/courses/ISOC102
http://www.altera.com/embedded

Cross Triggering (Do at home Exercise)

MODULE 6: Cross Triggering (Do at home Exercise)

Working with the Altera SignalTap™ Il Logic Analyzer, the DS-5 toolkit provides advanced, signal-level hardware cross
triggering between the CPU and FPGA domains. Using this capability, the software and FPGA designers can analyze the
captured trace and co-debug across hardware-to-software bounds. In this Module you will first learn how to use SignalTap I
to trigger the DS-5 tool. You will then use a breakpoint or a manual trigger to cross trigger SignalTap II.

14} Disassembly | {5 Memory | B Screen | 5= Outline | 14} Disassembly | /5 1

ARM DS-5 Toolkit

Index Address Opcode Disassembly

OxDOB2CC2C @ BCS get_dc_size_chrol
BitstreamGetBits

OxDOB2CC30 MOV rl,#2

DxDOB2CC34 MOV @, rd

Ox0082CC38 & BL BitstreamShowBit
BitstreamShowBits

OxBag82D264 PUSH {rd}

-3,071,52410x00820268|E590300C| [LDR ____r3, [r0, #0xc] |

0x0082D26€ LDR riz, [re,#0]

P

Timestamp Correlated

click to insert time bar
-0
[

Type |Alis | Home [=2 & 9 a5 a2 8 z ¢ 5 E
[7] [count {05 Y(06h){07h D8h {08k Y0AH {08 {OCh {00k {DEN Y 0F h Y1011k)1 2 X131k X5)16k X1 7h 18k X1 Gh 1 &b {15k A Dl &1 Db 4 1ER JAFH 4 20h Y 21h 22k {23t 24h
W [data_out (Trigt_Y00n)Y_Trigt 400N Trigt 00N Triet X00h)_ Trigt),

Trigger Position
SignalTap Il Logic Analyzer

Perform these steps first.

1. Power on the SoCKit

2. Boot to the Linux prompt.

3. Login as root

4. Kill the led scroll server. Type ‘kill 167 at the linux prompt.

4. Launch DS-5
SoCKit SW Lab Instructions, Version 14.0 60

N\NOW /AOERA, L LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

6.1 Configure Cross Triggering on the HPS

Configurations can be exported and imported within DS-5. This can be convenient when working as a team. In the context of
this lab it assists since the user can re-use an existing configuration. In this instance you will be tracing and cross triggering the

Linux kernel.

1. Import the desired Debug Launch Configuration.

e From the menu select File --> Import. Select Launch Configurations. Press Next.

Sl /C++ - Eclipse Platform
File |§Edit Source Refactor Mavigate Search Project Run

g——

New Alt+Shift+M »
Open File...

Close Ctrl+W
Close All Ctrl+Shift+W

Properties Alt+Enter

= Import

Select

Import launch configurations from the local file system.

Select an import source:

type filter text

. = General
» = C/C++
» = CVS
» = Install
> [= Remote Systems
4 [= Run/Debug
© Breakpoints
r‘%ﬁ)‘ Launch Cenfigurations I
. = Scatter hile Editor
» [= Target Configuration Editor
> [z Team

= e —
'?" < Back ‘ Mext = ’ Finish

SoCKit SW Lab Instructions, Version 14.0

-

61

Five Years Out

Cross Triggering (Do at home Exercise)

e Press the Browse button and navigate to the configurations sub directory. Press OK. Select both check boxes
in the Import Launch Configurations window and press Finish.

5 g M
% Import Launch Configurations El = % Import Launch Configurations L@ﬂ
Import Launch Configurations § Import Launch Configurations 'Y
Import launch configurations from the local file system ; ii Import launch configurations from the local file system ; %i
~ o

From Directory: Ci/altera_trn/SoCkit/SoCkit_SW_lab_14.0/software/cenfiguration -‘. From Directory: C:/altera_trn/SoCkit/SoCkit_SW _lab_14.0/software/configurations
g rImpDrl Launch Configurations @1 I = configurations I _“ Debug_Linux_DevKit.launch I

4 | altera_tm o
4 | SoCkit
» L SoCkit_ HW_Lab_14.0 s
4 | SoCkit_SW_lab_14.0

. he_output =
> 1 hps_isw_handoff
» 1 hps_workspace | 4 N
. output_files
. soc_system £
[C] Ovend)| 4 |l software [] Overwrite existing launch configurations without warning.
> L. Lab3
3 J led_blink =
@ > 1 splbsp kel @ Nets Es) Cancel
> . altera_trn 131 i
— - L
Folder: configurations
i ——._
Co D o]

2. Review the imported debug launch configuration.

o From the menu select Run --> Debug Configurations

@_Nindow Help

Set Next Statement

% Run

%, Debug

Run History
Run As

Run Configurations...

Debug History
Debug As

IDEbug Configurations... I

SoCKit SW Lab Instructions, Version 14.0 62

N\NOW /AOERA, L LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

e From the menu select Run --> Debug Configurations

e Select the "Debug_Linux_DevKit" configuration

e Select the Connection tab

e Refresh the connection. Press the Browse button. Select the Debug Harware. Press OK.

= Debug Configurations

Create, manage, and run configurations

Create, edit or choose a configuration to launch a DS-5 debugging session.

= —+
7 = *l H ST Mame: Debug_Linux_DevKit
type filter text Files #% Debugger| {2 RTOS Awareness | (9= Arguments | B Environment | 1 Event Viewer
[E] C/C++ Application Select target o

[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
#5 D5-5 Debugger

24 Debug_Linuws_DevKit Debug Cortex-A9_0 via Altera USB-Blaster 2

Select the manufacturer, board, project type and debug operation to use, Currently selected: Altera - Cyclone V 50C

Pr Iron Python Run Debug Cortex-A9_0 via DSTREAM/RVI

,BU Iron Python unittest Debug Cortex-A9_1 via Altera USB-Blaster

G Java Applet = i J

3] Java Application Debug Cortex-A%:2 SMP via Altera USB-Blaster

a7 Jython run Debug Cortex-A%:2 SMP via DSTREAM/RVI The currently
o Jython unittest

B Launch Group DTSL Optio 1 el onfigure trace or other target options. Using "default” configuration options
PyDev Django ——

43 PyDev Google App Run DS-5 Debugger will connect to an Altera USB-Blaster to debug a SMP Linux kernel

ep Python Run

éJ Python unittest Connections

E Remote Java Application
Linux Kernel Debug | Connection CV SoCKit on localhost [USB-1]:CV SoCKit USB-1

e Examine the DSTL options. Press the DSTL Edit button.
e Check the Enable FPGA --> HPS Cross Trigger for the first example.
e Check Assume Cross Triggers can be accessed.

Cross Trigger §. Trace Buffer| Cortex-A9 | 5TM | ETR
nable FPGA -> HPS Cross Trigger
["] Enable HPS -» FPGA Cross Trigger

- Ea - v x

@ssume Cross Triggers can be accessed:

e Select the Trace Buffer tab. Select the System Memory Trace Buffer (ETR).

Cross Trigger | Trace Buffer | Cortex-A9 | STM | ETR| ETF

Trace capture method ystem Memory Trace Buffer (ETR)

Tirmestarmnp frequency 25000000

SoCKit SW Lab Instructions, Version 14.0 63

N\NOW /AOERA, L LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

o Select the Cortex-A9 tab. Check the options as shown below.

Cross Trigger | Trace Buﬂ’er STM | ETR| ETF

nable Cortex-A9 core trace

Enable Cortex-A9 0 trace
Enable Cortex-A9 1 trace
[T PTM Triggers halt execution
Enable PTM Timestamps
[lEnable PTM Context IDs

e Select the ETR tab. Press OK.

Cross Trigger | Trace Buffer | Cortex-AD | STAM) ETR
unfi gure the system memory trace buffer.

Start address roc0000000

Size 01000

["| Enable scatter-gather mode

A 4KB Embedded Trace Buffer (ETR) has been selected at system address 0xC000 0000. Where is this buffer physically
located? Recall the GHRD block diagram. The HPS2FPGA bridge is located in the HPS memory map at address 0xC0000
0000. The Onchip RAM was added to the design in Qsys and is located at HPS2FPGA Bridge offset 0x0000 0000.

HSP2FPGA LWHPS2FPGA FPGA2HPS
[M] [M] [s]
FPGA fabric T
SysiD S
= ™
Onchip RAM E PIOLED [S] JTAG Master
PIO Button | S riual JT
] rmme
PIO DIPSW [S]
| System Contents| Address Map | Clock Seﬂingsl Project Settingsl Instance P

| hps_0.h2f_axi_master |

|hps_0.f2h_axi_slave
[lbnchip_memory2_0.51 | px0000_0000 — 0x0000_££££

SoCKit SW Lab Instructions, Version 14.0 64

N\NOW /AOERA, L LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

6.2 Configure Cross Triggering on the FPGA

SignalTap 11 allows developers to embed a Logic Analyzer within the FPGA. It has the ability to monitor and capture FPGA
signal activity at full data rates. Signals of interest are defined by the designer as are the trigger settings. SignalTap Il can
receive external triggers and also transmit triggers to other applications.

1. Launch SignalTap II.

e Start --> All Programs --> Altera 14.0.0.200 --> Quartus Il Programmer and SignalTap Il 14.0.0.200 -->
Quartus Il 14.0 SignalTap

2. Load the SignalTap Il definition (stp) file

o File --> Open. Navigate to c:\altera_trn\SoCKit\SoCKit_SW_lab_14.0
e Select the stpl.stp file. Press the Open button

“% Quartus I 32-bit SignalTap [Logic Analyzer - [stpl.stp]

4

File name: stpl.stp

m

ﬁ=)
B 4 Open File ==
. Altera 14.0.0.200
Look in: . Cilaltera_tr\SoCkit\SoCkit_SW_lab_14.1 |10 © O Ui

. Quartus I Programmer and Tools 14 : [. - I &
« Quartus 14,0 Programmer WA My Computer | tame S0t Ive.|Cutald

iy . he. ile.. Ider |
Quartus 1140 SignalTap I R, 208473 _ h‘::;:ult o Ekm :’;22;
|| Quartus D140 System Console hps_workspace File.. Ider 4/11/2(

E‘i‘ Uninstall Quartus I Programmer ;m;;: E: z :{zﬁf

y S ..]

, 50C Embedded Design Suite (EDS)1 - o Fie. Jder 4/13/21
sack PS corie s

Search programs and files 0 |

Files of type: [SignalTap 11 Logic Analyzer Fies (*.stp) v][cancel |
SoCKit SW Lab Instructions, Version 14.0 65
NN\OW AIERA, LY LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

3. Observe

Y Quartus I 32-bit SignalTap I Logic Analyzer - [stpl.stp)]

the SignalTap 11 setup

Five led_pio peripheral signals have been selected: address, chipselect, out_port, write_n and writedata.
Notice that the trigger is set on the falling edge of write_n.

Notice that both the HPS trigger out and HPS trigger in options have been enabled.
Some of the options are grayed out because you are using the standalone version of SignalTap 1.

Fle Edit View Processng Tools Help 5/ Sea
Zd & 9 N
Instance Manager: ¥ (2 Ready to acquire X | JTAG Chain Configuration: - JTAG ready x
Instance Status LEs: 908 Memory: 20480 Small: NA Medium: NA Hardware: [CV SoCKit [USB-1) '] [Setup]
] auto_sig... Notrunning 908 cells 20480 bits NA NA
Device: [@1: SCS(EBAGESIXFC6CEES)/.. v | [Scan Chain |
< i » SOF'”’ge:@ @
trigger: 2013/04/11 17:23:40 #0 VLod(mode: [3 Allow trigger condition changesonly v | | Signal Configuration: X
Node Data Enable | Trigger Enable | Trigger Conditions &
Type | Alias Name 40 40 117‘555:: AND ~ Trigger
.S 5 + - ..._system_led_pio:led_piojaddress Xh
< iolchi | s Trigger flow control: | Sequential v
Y ...C_system_led_pio:led_piojchipselect | 2=
S 5 +]-..._system_led_pio:led_piojout_port Xh Trigger position: [%Pfetriooerposbon ']
< > ...[soc_system_led _pio:led_puoiwrite_nl Trigger conditions: 1 =
&5 + - _..system_led_pio:led_piojwritedata XX000000h S
Node:
Instance: .
@) Hard Processor System (HPS) out
Pattern: [5 Don't Care v }
Trigger out
Pin: 3
Level: [- Active High v}
Latency delay: 5 cydes
SoCKit SW Lab Instructions, Version 14.0 66
ERA. LT i
N\N\OW /AO[ERA, LINEAR Five Years Out

Cross Triggering (Do at home Exercise)

6.3 Cross Triggering Examples:

Example 1: FPGA --> HPS

1. Arm the SignalTap Il trigger

e Press the Run Analysis button.

1 Quartus I 32-bit SignalTap I Logic Analyzer - [stpl.stp]*
File Edit Wew Processing Tools Help =

EHd & 9u
Instance Manages E % [EQ| Ready to acquire @ x
Instance tatus LEs: 908 Memory: 20430 Small: NA
|£| auto_sig... Mot running 308 cells 20480 bits MA&
4 1 b

Y Quartus I 32-bit SignalTap 1 Logic Analyzer - [stpl.stp]*
File Edit View Processing Tools Help 5

EdHd & 9w
e]) ())] Emp— (0] *
Instance Status LEs: 908 Memory: 20480 Small: MNA

|£| auto_sig... |Waiting for trigger 908 cells 20430 bits MA

4 I P

2. Start the DS-5 Debug configuration

o Run --> Debug Configurations. Select Debug_Linux_DevKit. Press Debug.

Create, manage, and run configurations

Create, edit or choose a configuration to laum

DEx B3~

Apply Revert
type filter text

[E] C/C++ Application
[E] C/C++ Attach to Application ’ Debug]) Close
[E] C/C++ Postmortem Debugger

[T] C/C++ Remote Application
4 &5 DS-5 Debugger
#% Debug_Linux_DevKit

SoCKit SW Lab Instructions, Version 14.0 67

N\NOW /AOERA, L LNEAR Five Years Out

Cross Triggering (Do at home Exercise)

e Allow Linux to run by pressing F8 or the green Continue button =

3. From within Linux turn the FPGA led on. This will cause SignalTap to trigger. In turn it will fire a trigger output to the HPS
causing it to stop. The debugger will show the state of the two Cortex-A9 cores and will display the trace information.

Type "echo 0> /sys/class/leds/fpga_led0/brightness" at the Linux prompt. Press enter.

£P COMI16 - PuTTY

e SignalTap triggers on the falling edge of write_n.

" Quartus I 32-bit SignalTap I Logic Analyzer - [stpl.stp]® EI@
Flle Edit View Processing Tools Help 5/ Search altera.com 9
EH & 9
Instance Manager: |ﬁ| |l>;| " |Q| Ready to acquire |i| X | JTAG Chain Configuration: ITAG ready |i| ®
Instance Status LEs: 908 Memory: 20480 Small: MA A — |USB-BIasherII [UsB-1] - | | Setup... |
ﬂ auto_sig... Mot running 908 cells 20480 bits MNA
Device: | @1: SCS(EBAGIXFCE) (0x02002(~ | | Scan chain |
y — R |>>| SOF Manager: |j,_| |LUJ_| tput_files/soc_system.sof | |
log: 2013/04/14 00:52:16 #1
Type | Alias Name |'3 _|2 '|1 ? 2| ? ‘I‘ 5|
:gj +-...d_pio:led_piojaddress 0h
.c) ...led_pio:led_piojchipselect
:gj +-...d_pio:led_piojout_port 0h
.c) ...m_led_pio:led_piojwrite_n
:gj +-..._pio:led_piojwritedata i

e SignalTap sends a trigger out signal to the HPS which causes a halts exception within DS-5.

SoCKit SW Lab Instructions, Version 14.0 68

NA\OW /AB[ERYA, L7LJ<“EOQQ Five Years Out

Cross Triggering (Do at home Exercise)

At this point it is worth examining the sequence of events that occurred.

1. The echo command is entered at the Linux prompt
2. The command traverses through the Linux kernel.

3. The appropriate module issues the write led command.
4. SignalTap triggers on the falling edge of the write_n signal and immediately sends a trigger out signal to the HPS.

This causes a halt exception within DS-5.

5. DS-5 then follows by capturing the trace and displaying it as seen below.

Note the each time you execute this sequence of events the trace captured by DS-5 will most likely be different because we

are tracing the kernel and not an application.

—

"3 DS-5 Debug - Chaltera\13.1\embedded\embeddedswAsocfpga\sources\linux-socfpgakemeNira\iradomain.c - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help

(S~ #- DO~ GRAIRARCR AL = BE
% Deb 2 [(5Proj | #Rem| i Stre | = O/ Commands 52 [History| ¥ Scripts = O|[t9=Va[% Br 2\ o Re| ' &x| O F | = O]
| = B G bl B~ %~ X %™ 7|
Bl X% Q| <&, Linked: No Context ~ 17,,,,7,,,,,‘%%,H"?E‘,”NLC,E“‘&’“']
i T In thread 3 (0S thread id @) - [¥] @ S:0x80068664 @ sys_delete_module [Debugg|
B 0l 32 .% i 5:0x80018F08 74,0 mov pc, lr V] @ 5:0x80068938 @ load_module [Debugger Int |
Debug_Linux_DevKit connected a || weit
‘ = = “" S Con = continue
(& Active Threads ,=’ Execution stopped at: S:@x3001BFes8 —
X% swapper/1 #3 stopped (PID Owas |~ || In thread 3 (0S thread id @))
= cpu_v7_do_idle+0x8 ~ ||| S:exsee1BFe8 74,6 mov pc, 1r g
« 1 »
‘ Debug_Linux_DevKit connected
. Pre Submit
Linux Kernel: Enabled Command: ~:c [i] ’ |
| 3 irqdomain.c 82\ M gice | non-atomich 2% Memory | £ Modules | XN
707 - GG S R@Eaiarim e -B-"
7038 irq_domain_disassociate_many(domain, virg, 1); e - -- - -
709 irq_free_desc(virqg); i3, Linked: Debug_Linux_DevKit:swapper/1
/10 Trace | Properties | Ranges |
711 EXPORT_SYMBOL_GPL(irq_dispose_mapping); . coperies | TR0 -
712 __do_dive4 g 48 8
713 /% irg_find_mapping e
714 * irq_find_mapping() - Find a linux irq from an hw irq numl cpu_idl | I
715 * @domain: domain owning this hardware interrupt —\rq_svc | 661% b
716 * @hwirq: hardware irq number in cpumask_next_and | 4445 1
717_*/ gic_handle_irq 4485
71funsigned int irq_find_mapping(struct radix_tree_lookup | 4445 i
719 irq_hw_number t hwir test_bit | 448% (]
720 _find_next_bit_le 44 s
72 struct irq_data *data; arch_local_irq_enable | 222% 4
7 arch_local_save _flags | 2.22%
7 /* Look for default domain if nececssary */
7 if (domain == NULL)
7 domain = irq_default_domain;
7 if (domain == NULL)
7 return 0;
7 switch (domain->revmap_type) { aoe Soacs S - o =
* A IRQ_D(MAIN_MAP_LEEACY: 2|S:0x80079D23 irq find mapping
- 3 : S:@x801FD4AR radix_tree_lookup
73 return irq_domain_legacy_revmap(domain, hwirq); © Corr e ()
case IRQ_DOMAIN_MAP_LINEAR: c°nt:§t esniin
case';;{%’;ﬁﬂ;‘%g;‘,’“”(d°“'“"’ hwirq)s 8 Timestamp: 242514512066 d
Foi faad lozk()T) S:@x8eeenDse __irq_svc + 9x00000040 3
dits = radis tr;e lookup(&domain->revmap_data. tree S:0x800eF2C38 arch_local_irq_enable + ©x0@@00010
S Fesd URISCK O] P PCAsREIS S:0xB8000F438 cpu_idle + @x00000094
i (data) % = S:0x8000F440 arch_local_save_flags
R W s S:0xB8000F444 cpu_idle + 0x@00200A0

SoCKit SW Lab Instructions, Version 14.0

69

Five Years Out

Cross Triggering (Do at home Exercise)

Example 2: HPS --> FPGA

1. Disconnect the DS-5 from the target

e Pressthe = |
=R

%| Ic
® % |

e Press the

2. Modify the DS-5 Debug Configuration settings

vgv|9

- - |

Run --> Debug Configurations.
Select the Debug_Linux_DevKit configuration.

e S et

Select the Connection tab. Press Edit to modify the DSTL options.

Select the Cross Trigger tab.

Disable the Enable FPGA -> HPS Cross Trigger
Enable the Enable HPS -> FPGA Cross Trigger
Press OK. Press Debug to start the debug session.
Press the F8 (Continue) button.

SoCKit SW Lab Instructions, Version 14.0

Select target
Select the manufacturer, board,

[€] C/C++ Application

[©] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[c] C/C++ Remote Application
#5 D5-5 Debug

ger

Debug Cortex-
@' Tron Python Run Debug Cortex-
& Iron Pythen unittest Debug Cortex-
G Java Applet Debug Cortex-
[7] Java Application Debug Cortex-
Ju JUnit Debug Cortex-
.5" Jython run

& Jython unittest
= Launch Group

DTSL Option Conf

Trace Buffer| Cortex-A9 | 5TM | ETR

Cross Trigger
ble FPGA -= HPS Cross Trigger

]
|E HP5 -= FPGA Cross Trigger

N\NOW /ADERE, L LR

"Disconnect from Target" button.

"Remove Connection" button.

70

Five Years Out

Cross Triggering (Do at home Exercise)

3. Modify the SignalTap Il settings

Change the trigger settings in SignalTap Il. Remove the write_n falling edge as a trigger and replace it with a HPS rising edge

trigger input.

Bring SignalTap Il to the foreground
Select the Setup tab.

Right click on
Click on the

the

A"

[£ Don't Care

cell adjacent to the write_n node as shown below. Click on Don't care.

Press the Run Analysis button.

1 Quartus T 32-bit SignalTap I Logic Analyzer - [stpl.stp]*

| HPS trigger out Pattern select as shown below. Select Rising Edge.

=)o /=]

File Edit View Processing Tools Hep & Search altera.com 7]
Lj lﬂ [Ié:] g o
Instance Manager: a @ Ready to acquire % | JTAG Chain Configuration: ITAG ready x
Instance Status LEs: 908 Memary: 20480 Small: MA Medium: MNA Large Hardware: [USB—EIasterH [USE-1] -] [Setup...]
|£| auto_sig... Mot running 908 cells 20430 bits MA MA MA
Device: [@‘11 5CS(EBAGXFCE) (0x02D02('] [Scan Chain]
SOF Maniager: Jmut_ﬁlesfsoc_syshem.sofm
trigger: 2013/04/14 11:33:29 #0 Lock mode: | =) Allow trigger condition changes only = Signal Configuration: X
Node Data Emable | Trigger Enable | Trigger Conditions <
Type | Alias Name 40 40 1[¥| Basic AND Trigger
.g«; +- __d_pio:led_piojaddress ¥h
T - — Trigger flow contral: | Sequential
= ...led_pio:led_piojchipselect ey
__§_§ #-___d_pio:led_piojout_port ¥h Trigger position: TE Pre frigger position -
C ad nin‘led pinlwrite
Y -..m_led_pio:led_| - Trigger conditions: | 1
ts %] .._pio:led_piojwritedata 0000000t 2 Don't Care -
0 Low
™ Faling Edge S i
4~ Rising Edge Mode:
1 High Instance:
Either Ed _
X rEuE @ Hard Processor System (HPS) trigger out
Inzert Value... Pattern: L ZZ Don't Care - J
| £E Don't Care
Trigger out | 0 Low
" Falling Edge =
Pin:
Higl
Instance: 1
¥ Either Edge

Hard Processor System (HPS) trigger in

Hard Processor System (HPS) event: |0

Level: [= Active High -

Latency delay: 5 cydes

Zeew

SoCKit SW Lab Instructions, Version 14.0

N\NOW /ADERE, L LR

4

Five Years Out

Cross Triggering (Do at home Exercise)

4. SignalTap will NOT trigger until it receives the trigger input from the HPS. The HPS will transmit the trigger signal if it hits a

breakpoint or if it is manually interrupted.

In this example you are arbitrarily halting the HPS. It would be more meaningful if it halted on a breakpoint directly after the

led was written to. This is not possible in this scenario since we are source level debugging the kernel and not the gpio-altera

module.
e Bring DS-5 to the foreground.
e Break the HPS execution by pressing F9 (Interrupt)

[8 proc-vi.s &2 I gpiolib.c WE non-atomic.h P12 = O |[}4] Disassembly (E Memory (§ Medules ﬂ:j Events | 0F Outline ({t Trace 3 =0
62 .popsection - ¢ AERGEMIr MG~~~
63
Ga J* <§> Linked: Debug_Linux_DevKit:Cortex-A9 0 -

Eg : cpu_v7_do_idle() Trace |Pmperki5|Ran95|

57 * Idle the processor (eg, wait for interrupt). update._sd_lb_stats 1041% i
63 * 1 _dO_d""6_4 L TM% LM

59 * IRQs are already disabled. —do_softirg [5.22%)

* __Mmemzero 297%

hrtimer_interrupt 2.80%

logarithmic_accumulation 2.62%

run_rebalance_domains 243%

2 Fa mov pc, Lr run_timer_softirg 207%

'S ENDPROC (cpu v7 do idle) cpumask_next_and 2.04%

76 load_balance 195%

77 ENTRY (cpu_v7_dcache_clean_area) ktime_get 1.90%
78 #ifndef TLB_CAN_READ_FROM_L1_CACHE idle cpu 1.80% -

79 dcache_line_size r2, r3

s@l: mecr pl5s, @, re, c7, clg, 1 @ clean D entry
81 add ré, r@, r2

82 subs ri, ri, r2

a3 bhi 1b

34 dsb

35 #endif

86 mov pc, Lr

57 ENDPROC(cpu_v7_dcache_clean_area)

88

89 string cpu_v7_name, “"ARMv7 Processor”
98 .align

91

92 /* Suspend/resume support: derived from arch/arm/mach-s5pv2
93 .globl cpu_vw7_suspend_size

94 .equ cpu_v7_suspend_size, 4 * 8

95 #ifdef CONFIG_ARM_CPU_SUSPEND

96 ENTRY (cpu_v7_do_suspend)

a7 stmfd sp!, {r4 - rie, Lr}

98 mrc pl5, @, r4, c13, c@, @ @ FCSE/PID

SoCKit SW Lab Instructions, Version 14.0

4

| Index | Address |

| Detail

1 @x3887BABS
1 @x3887BAFE
1@x3887E684
1@x3887C5A4
1 BxBeeara4C
1@xdeees4re
1@x38e8s4r4
:BxBeeabDia
1@x38eer2C8
1@x3880F438
1 @x38ear3DC
1 @x38eer3Ee
5:@xBeaar2re

|| __-1]s:6xs0016F00]

5
5
5
5
5
5
5
5
5
5
5
5

rcu_eqs_enter_common
atomic_add

rcu_eqs_enter_common + @x@eeaee4C
arch_local_irq_restore + @x20000014

handle_IRQ + @x20088058
__raw_readl

gic_handle_irq + @x8000802C
__irg_svc + axeee00040
default_idle + @x@ee08023
cpu_idle + @x@0008094
test_bit

cpu_idle + @x@e08083C
default idle

cpu_v7_do_idle T

xception: HA

<

I

| +

N\NOW /ADERE, L LR

72

Five Years Out

Cross Triggering (Do at home Exercise)

Instance Manager: P Ready to acquire # | JTAG Chain Configuration: IJTAG ready X
Instance Status LE=: 908 Memory: 20430 Small: NA Medium i — [USB-BIasterLI [UsE-1] _l [Setup...]
@ auto_sig... Mot running 203 cells 20430 bits MA A

Device: [@l'- SCS{EBAS|XFCE) (0x02002 '] [Scan Chain]

4

(L

: SOF Manager: @ Jmt_ﬁlesfsoc_system.sofg

CONGRATULATIONS!!

log: 2013/04/14 12:58:10 #1 k to insert time ba

Type | Alias Hame 4 —?' ‘f—' ‘|1 [|| ? 2| E," 4,
s - ...d_pio-led_piojaddress Gih

< __led_pio-led_piojchipselect :

S [l ...d_pio:led_piojout_port h

< _..m_led_pin:led_piojwrite_n i

__g [# __._pio:led_piojwritedata DDDDEJDD‘Ih

You have successfully used the

SoCKit SW Lab Instructions, Version 14.0

cross triggering debug tools

73

N\NOW /AOERA, L LNEAR Five Years Out

