

SoCKit SW Lab Instructions, Version 14.1 1

SoC Software Lab Instructions

Table of Contents

OVERVIEW .. 2

MODULE 1: Getting Started .. 4

1.1 Acquiring the Arrow SoCKit... 4
1.2 Download the Altera Design Software .. 5
1.3 Install the Altera Design Software .. 8
1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW lab) 13
1.5 Download PuTTY ... 13
1.6 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop) 14
1.7 Configure the Serial Terminal for the Labs (Complete this at the Workshop) 17
1.8 Preparing the SD Card ... 18

MODULE 2: Examine the System Design ... 19

2.1 System Architecture .. 19
2.2 Examine the Cyclone V SoCKit .. 20

MODULE 3: Generate, Build and Run the Preloader .. 21

3.1 Generate the Preloader .. 22
3.2 Build the Preloader .. 25
3.3 Download a hardware image to the FPGA .. 27
3.4 Launch DS-5 Embedded Development Suite & Import the Preloader project 29
3.5 Create a Debug Configuration for the Preloader project 32
3.6 Step through and then Run the Preloader project .. 36

MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS) 41

4.1 Validate the FPGA Peripherals from DS-5 ... 42
4.2 Validate the FPGA Peripherals from a simple Linux Application 46
4.3 Validate the FPGA Peripherals using Linux Device Drivers (Modules) 51
4.4 Examine the Device Tree Blob (DTB) .. 54

MODULE 5: Taking the Next Step.. 59

MODULE 6: Cross Triggering (Do at home Exercise) .. 60

6.1 Configure Cross Triggering on the HPS.. 61
6.2 Configure Cross Triggering on the FPGA ... 65
6.3 Cross Triggering Examples: .. 67

Version 14.1 02/27/2015 Tutorial

 Tutorial
 Tutorial

OVERVIEW

SoCKit SW Lab Instructions, Version 14.1 2

OVERVIEW

The Altera SoC combines a Hard Processing System (HPS) and an FPGA on a single device. The HPS has dual core ARM

Cortex-A9 MPUs and a host of peripherals such as DDR3 controllers, Ethernet MACs, SPI controllers and many more. The

FPGA portion of the device is tightly coupled through high performance bridges to the HPS. The designer can add peripherals

they create or third party IP to the FPGA and map it into the HPS. Thus you have a flexible and very powerful solution.

This software lab aims to answer to following questions that a developer might have:

 How do I build and debug software to boot my custom HPS configuration?

 How do I map the FPGA peripherals into the HPS memory map?

 How do I address the individual registers within these peripherals?

 How does my host OS know which peripherals have been added and which device drivers to load?

The HPS is configured using Qsys, Altera's FPGA IP integration tool. Configuration includes selecting DDR memory,

determining clock frequencies and selecting which HPS peripherals your design will use. As such Qsys inherently has most of

the information to satisfy the questions asked above. Quartus is also used to define the HPS peripheral pin outs.

These two Altera FPGA development tools will generate the files needed for the transfer of design information from the

hardware to the software domain. A significant portion of the software modules will use these handoff files to build a

preloader, to examine the system register set (including FPGA registers) and lastly to follow the path of the Device Tree from

the .sopcinfo file to the Device Drivers in Linux.

Module Summary:

The Software labs are based on the Golden Hardware Reference Design (GHRD) that is provided with the SoCKit. You will

examine the architecture of the GHRD in Module 2.

In Module 3 you will learn how to create, build and run a custom preloader that will be used to boot a high level operating

system.

In Module 4 you will see how to incrementally validate the peripherals created in the FPGA. First you will use the extended

HPS register set (including those from FPGA peripherals) to read and write to those FPGA peripherals from the DS-5 debugger.

Then you will see how to access them from a Linux application and finally how to address them from Linux device drivers.

OVERVIEW

SoCKit SW Lab Instructions, Version 14.1 3

Module 6 is a bonus lab that shows how to cross trigger during debug between the CPU and FPGA domains.

Hardware to software domain transfer:

The diagram below shows three main areas of transfer from the hardware to software domains.

1. The files necessary to create a custom preloader

2. The .svd file that describes the FPGA peripherals and is used by the DS-5 register function

3. The sopcinfo file that describes all of the HPS devices selected in Qsys and those custom peripherals added in the FPGA.

These are used to build a device tree. The device tree is used by the Linux kernel to determine which device drivers to load at

boot time.

Getting Started

SoCKit SW Lab Instructions, Version 14.1 4

MODULE 1: Getting Started

Your first objective is to ensure that you have all of the items needed and to install the tools so that you are ready to create

and run your design.

List of Required Items:

 Arrow Electronics SoCKit evaluation board

 Quartus II v14.1 Stand-alone Programmer

 Altera SoC EDS v14.1

 PuTTY terminal emulator

 Computer with Windows 7, 4 GB RAM, minimum of I3 core and over 10 GB free hard disk space for the Quartus II
install

 Lab Design Files

1.1 Acquiring the Arrow SoCKit

To order a SoCKit please click on the link below

Order an SoCKit from Arrow Electronics

http://components.arrow.com/part/search/sockit?region=na

Getting Started

SoCKit SW Lab Instructions, Version 14.1 5

1.2 Download the Altera Design Software

You will need to install the following design software packages:

 SoC Embedded Design Suite (EDS) v14.1

The Programming Software can be downloaded from the Altera web site.

 Go to the Altera Download web page at https://www.altera.com/download/dnl-index.jsp

 Select the Download button next to the SoCEDS

https://www.altera.com/download/dnl-index.jsp

Getting Started

SoCKit SW Lab Instructions, Version 14.1 6

 Press the Download button.

 Login to myAltera account at https://www.altera.com/myaltera/mal-index.jsp

 Use your existing login, or Create Your myAltera account.

https://www.altera.com/myaltera/mal-index.jsp

Getting Started

SoCKit SW Lab Instructions, Version 14.1 7

 Select a location.

 The next page of the installation will look like:

 Verify the selections shown below.

 The download of the selected files will begin once you have chosen a folder to save them in.

 If you are using Internet Explorer it may block the download. Click the options bar to allow the

download

Getting Started

SoCKit SW Lab Instructions, Version 14.1 8

1.3 Install the Altera Design Software

 Obtain a 30-day evaluation license for SoC EDS Subscription Edition by clicking the activation code link

below.

 http://ds.arm.com/altera/altera-eval-edition/

 You will be provided with an activation code. Use this code when prompted by the ARM licensing

 manager.

 Start the SoC EDS Installation. Double Click the SoCEDSSetup-14.1.0.186-windows.exe file that was

downloaded.

 Accept the license agreement and use all the default settings and locations for installation

 Install the drivers and DS-5. Use all the defaults. If you are notified that you should restart Windows,

please ignore this and continue.

http://ds.arm.com/altera/altera-eval-edition/

Getting Started

SoCKit SW Lab Instructions, Version 14.1 9

Install the 30 day DS-5 Altera Edition license

 Launch DS-5. Start --> All Programs --> ARM DS-5 --> Eclipse for DS-5

 A Workspace Launcher window will ask you to select a workspace.

 Press OK to select the default

 You will see a "No Licenses Found" Window. Select Open License Manager

 Press the Add License Button in the ARM License Manager

Getting Started

SoCKit SW Lab Instructions, Version 14.1 10

Please be aware that the license will expire 30 days after you perform the next step.

 Enter the activation code that you received earlier. Press the Next Button.

 Use the pull down menu to select a host ID. Press the Next button.

Getting Started

SoCKit SW Lab Instructions, Version 14.1 11

 Enter your ARM account email address and password.

 If you do not have an account then click on the link to create one.

 Press the Finish button.

Getting Started

SoCKit SW Lab Instructions, Version 14.1 12

Use git to clone the Linux source files. You must be connected to the internet to implement this step. You will need these

source files when you attempt the optional cross triggering exercise in Module 6.

 Open the Embedded Command Shell

 Change directory to c:\altera\14.1\embedded\embeddedsw\socfpga\sources

 Type source ./git_clone.sh.Press Enter.

Please note that this can take up to an hour to complete

Getting Started

SoCKit SW Lab Instructions, Version 14.1 13

1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW lab)

 Create a folder c:\altera_trn on your PC.

 Click on the following link to download SoCKIT_Materials_14.1.zip

 Save it to c:\altera_trn on your PC

 Extract the SoCKIT_Materials_14.1.zip file to this folder

 The c:\altera_trn directory should look like this

1.5 Download PuTTY

 Download PuTTY by clicking on this link: Download PuTTY here

 No installation is required. Move the .exe file to a convenient location that will be easily accessible during

the lab.

http://www.rocketboards.org/pub/Documentation/ArrowSoCKitEvaluationBoard/SoCKIT_Materials_14.0.zip
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Getting Started

SoCKit SW Lab Instructions, Version 14.1 14

1.6 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop)

Please connect cables to the connectors shown in the diagram below. All cables are provided in your SoCKit.

 Connect the micro USB cable to the USB host connector on your laptop and to the USB Blaster II connector

on the SoCKit.

 Connect the second micro USB cable to the second USB host connector on your laptop and to the UART

connector on the SoCKit.

 Connect the Ethernet cable to the Ethernet connector on your laptop and to the Ethernet connector on the

SoCKit.

 Connect the Power Supply to the Power connector on the SoCKit.

Getting Started

SoCKit SW Lab Instructions, Version 14.1 15

 There are a few jumpers that require configuring before proceeding with the labs.

 BOOTSEL[2..0] jumpers. These should be configured as "100" to select boot from SD card 3.3V

 CLKSEL[1..0] jumpers. These should be configured as "00" for the slowest HPS peripheral clock speed

option.

 Please ensure that the jumpers are configured as indicated below.

Getting Started

SoCKit SW Lab Instructions, Version 14.1 16

Modify the default MSEL bit settings. The board needs to be set to configure in the FPPx32, fast, compressed mode.
This will allow u-boot to configure the FPGA.

 SW6 is located on the bottom side of the SoCKit.

 Please change MSEL[0:4] to 01010.

Verify that the JTAG chain is correctly configured. The JTAG chain switch is located in to the right of the green audio

connector.

 HSMC_EN should be disabled (left position) and the HPS_EN should be enabled (right position).

Getting Started

SoCKit SW Lab Instructions, Version 14.1 17

1.7 Configure the Serial Terminal for the Labs (Complete this at the Workshop)

Caution:

Do not continue until you have done the following:

 Eject the SD card before you power the board on.

 Turn your SoCKit on.

 Verify the USB to UART COM Port. Open the Device Manager

 Open PuTTY and configure it for Serial, 115200 baud, COMxx. Press Open

You may Proceed

Getting Started

SoCKit SW Lab Instructions, Version 14.1 18

1.8 Preparing the SD Card

If you have purchased the SoCKit then your kit will most likely not contain an imaged SD card. The SD card is used to boot the

Linux system and is used in a number of the Modules.

Please follow the links below to the Rocketboards.org web page that will provide step by step instructions on how to do so.

 Creating an SD Card using a Windows Host

Creating an SD Card using a Linux Host

CONGRATULATIONS!!

You have just completed all the setup and installation requirements and are now ready to examine the

system-level design.

http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard141LinuxGettingStarted#Creating_an_SD_Card_using_a_Windows_Host
http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard141LinuxGettingStarted#Creating_an_SD_Card_using_a_Linux_Host

Examine the System Design

SoCKit SW Lab Instructions, Version 14.1 19

MODULE 2: Examine the System Design

Module Objective

In this module you will review the architecture of the design that was created in Qsys. You will also examine the layout of the

SoCKit.

2.1 System Architecture

There are many

components on the SoCKit

that can be used, including

the LCD, flash, Audio DACs,

and IR.

The system was created in

QSys using a standard

library of re-useable IP

blocks. The orange section

of this diagram is the HPS

section, while the green

section is the FPGA section.

The HPS section was

configured in the HPS

component in Qsys. There

are three bridges between

the HPS and FPGA sections.

You will focus on

peripherals connected to

the LWHPS2FPGA bridge

and for this lab, specifically,

the LED PIO. They are

mapped through the

bridge into the HPS

addressable map.

Examine the System Design

SoCKit SW Lab Instructions, Version 14.1 20

2.2 Examine the Cyclone V SoCKit

Examine the components on the Cyclone V SoCKit:

Note: The micro SD connector and the configuration DIP switch are located on the reverse side of the board.

CONGRATULATIONS!!

You have just completed the examination of the system-level design

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 21

MODULE 3: Generate, Build and Run the Preloader

In this section we will examine the path from the Handoff files through to the
creation of the preloader as shown in the graphic on the right.

The preloader, also known as the spl or u-boot-spl (second program loader)
is essential to being able to boot an operating system on an Applications
class processor, such as a Cortex A-9.

The steps for booting an Application Class Processor include the following

1. The Boot ROM is run from power on reset or warm reset. It's only function
is to read the BOOTSEL and CLKSEL settings and read the preloader from an
appropriate source such as SD, QSPI or NAND flash.

2. The preloader is copied from the source to On Chip RAM (64K limit) and
executed. Its main functions are to set the appropriate clocks for the
processors and peripherals by manipulating the PLLs and setting up pin
muxing required to route selected peripheral controllers to IO pins. It also
sets the DDR memory controller parameters and calibrates the memory.
When this is complete it will load the boot loader (in our case u-boot) from
the external boot source to DDR and start its execution..

3. U-Boot will load the kernel and the device tree blob into memory from the
boot source. It will launch the kernel and pass the dtb contents to it.

The Altera SoC is unique among Applications Class Processing solutions
because the user can customize and add to the peripheral set attached to it
by modifying the FPGA. All SoC customization is implemented by the user in
the Qsys tool. This customization is passed to the software domain in the
form of isw handoff files. These files are used by the BSP Editor to generate
the preloader source files.

The first barrier to success that you will experience when you initially power
up your own custom SoC based board will be to get the preloader to run.
Being able to use the DS-5 Development suite and step through code will
give you insight into what is functioning on your board and what might be
causing a problem. It could be very helpful in uncovering any board level
hardware issues.

In this module you will do the following

 1. Generate the preloader using the BSP Editor
 2. Build the preloader
 3. Step thru the preloader using the ARM DS-5 development suite.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 22

3.1 Generate the Preloader

 Use the ISW handoff files and the BSP Editor to generate the customized source code for the preloader.

 1. Open the Embedded Command Shell

Navigate to the embedded install directory for the SoC EDS and launch the Embedded Command Shell

 Browse to <Install Directory>\embedded and select the Embedded_Command_Shell.bat file

 Double click the file to launch the shell

2. Launch the BSP Editor

 At the Command prompt type "bsp-editor" and press the enter key.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 23

 3. Create a new BSP

 Select File --> New BSP to create a new BSP

4. Indicate the location of the Preloader Settings Directory

This directory contains the xml files that Quartus / Qsys has generated. They describe the customized peripheral and

DDR settings for the SoC.

 Press the button to navigate to the directory, then press Open

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 24

 5. Generate the preloader

 Press OK to create the BSP settings file and directory

Note the default location of the created preloader project directory is \software\spl_bsp

 Press the Generate button to generate the preloader source and makefile

 Press Exit once generation is complete.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 25

Take note of the generated sub-directory. The custom HPS information contained in the xml files have been

converted into c header files that can be implemented when the preloader runs. A (1) next to a peripheral (in the

pinmux_config.h file) indicates that its controllers output signals will be routed to the appropriate pins on the HPS

portion of the SoC. The preloader will use this information when it runs the pinmux routine.

3.2 Build the Preloader

The preloader can be built from within the Embedded Command Shell

 CD to the preloader project directory within the shell

 Type "make" at the prompt and press enter

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 26

A tar file which contains a template of standard source files for the preloader is being copied from the SoC EDS install
directory. The custom source files are in the generated sub-directory.

The preloader will take a few minutes to build. An examination of the preloader project directory after completion shows the
project contents. The preloader ELF file resides in the \software\spl_bsp\uboot-socfpga\spl directory.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 27

3.3 Download a hardware image to the FPGA

Before you continue please ensure the following:

 The SD card is still in the ejected position

 The SoCKit is still powered on

 Launch the Quartus Programmer.

 Is the USB-Blaster II visible in the Hardware Setup window ? If not, press “Hardware Setup” and select CV

SoCKit so that it populates the currently selected hardware line. Press Close

 Press the Auto Detect button to detect the JTAG chain.

 Select the 5CSXFC6 device.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 28

 Two devices are discovered. The first is the HPS section of the SoC. The second is the FPGA portion of the SoC

 Select the 5CSXFC6D6 for rev D kits or 5CSXFC6D6ES for earlier revisions. Press the Change File button.

 Navigate to the "output files" sub-directory. Select the "soc_system.sof" file and press the Open button.

 Check the Program / Configure box. Press the Start button. Wait till progress is at 100%.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 29

3.4 Launch DS-5 Embedded Development Suite & Import the Preloader project

1. Launch DS-5 from the Embedded Command Shell

Note: It is possible to launch DS-5 from the Windows Start button. Do NOT do this since the preloader project

makefile requires that it be executed within a cygwin environment (the Embedded Command Shell).

 Type "eclipse" at the Embedded Command Shell prompt and press enter

 Please wait for a few seconds while DS-5 starts up

2. Initialize Eclipse workspace

When Eclipse first launches it is a good idea to select a specific workspace. It is useful to have a separate Eclipse

workspace associated with each set of hps_isw_handoff files.

 Eclipse will request that you select a workspace

 Press the button to select a workspace directory.

 Navigate to the SoCKit_SW_lab_14.1 directory.

 Press the button and enter "hps_workspace". Press OK.

 Press OK. The DS-5 will shutdown and reload in the new workspace.

 Close the "Welcome to DS-5" tab

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 30

 Close the default "Welcome to DS-5" tab

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 31

3. Import the Preloader project

It is useful to import the preloader as a makefile project into the DS-5 environment. This allows the user to perform

source level debugging.

 Select File --> Import

 Navigate to C/C++ --> Existing Code as Makefile Project. Press Next

 Enter "spl" for the Project Name

 Press the button. Navigate to the Code location. Press OK. Press Finish

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 32

3.5 Create a Debug Configuration for the Preloader project

1. Create a new Debug Configuration

The debug configuration specifies the logistics required to debug the preloader software project. Connectivity to the

SoCKit is selected here. DS-5 can be customized by using .ds scripts to perform initialization and setup functions

before debugging begins. This is also where the specific ELF file that will be source level debugged is specified.

 Select Run --> Debug Configurations

 Select DS-5 Debugger and press the "New Launch Configuration" button

 Enter "spl" in the Name field

 2. Setup the Connection to the Target board

 Click on the Connection tab. Select Cyclone V --> Bare Metal Debug --> Debug Cortex-A9_0 as the target.

 Click on the Target Connection pull down menu and select USB-Blaster.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 33

Before you continue please ensure the following:

 The SD card is still in the ejected position

 The SoCKit is still powered on

 Click on the Browse button in the Connections --> Bare Metal Debug section.

 Wait a few seconds for the window to populate. Select the CV SoCKit and press the OK button.

3. Select the files necessary for Target debug

 Click on the Workspace button in the Files sub-section of the Files tab.

 Navigate to the spl_bsp --> uboot-socfpga --> spl directory and select the u-boot-spl elf file. This file contains

the obj code and the symbol tables for the preloader software project.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 34

 Press the button to add another file

 Click on the pulldown arrow and select "Add peripheral description files from directory".

 Press the File System button. Navigate to the synthesis sub-directory. Select it and press OK

The SVD (System View Description) file is located in this directory. It was generated by Qsys and can be considered a handoff

file for software debug. This file provides the DS-5 with information regarding the peripheral sub-system that was designed in

the FPGA and connected to the HPS via the HPS2FPGA bridge. This will allow you to symbolically read or write to these

peripherals and they will be seen as an extension to the HPS peripheral listing in the peripheral window in DS-5.

Note: Please verify that you have added "u-boot-spl" elf file to the Files section and NOT the Target Configuration section

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 35

4. Configure the Debugger

 Click on the Debugger tab.

 Select the "Debug from entry point" pilot button.

 Check the "Run target initialization debugger script" box.

 Press the File System button and navigate to the "arrow_sockit_preloader.ds" script

 Press the Open button.

 Press the Debug button to start the debug session.

Note: For more information on DS-5 scripts please click on the following link. Creating a debugger script file

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0446f/CIHDIBCA.html

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 36

3.6 Step through and then Run the Preloader project

 1. Add a ds breakpoint script

 This script will conveniently add a few breakpoints that will assist in your exploration of the preloader code.

 Click on the Scripts tab

 Click on the Import Scripts icon

 Navigate to the breakpoint.ds script and press Open

 Select the breakpoint.ds script. Press Open.

 Press the Execute Selected Scripts button. Notice the breakpoints tab.

 Press the continue button to start the debugger. The debugger will stop at the first breakpoint

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 37

2. Explore the preloader code

As was discussed earlier the preloader is made up of standard code common to most system architecures and some
generated code based on the customized system entry in Qsys. The section of code that you will explore is specific for the
HPS, the DDR3 memory and peripherals that were specified in Qsys. Most of the board customization occurs in the
spl_board_init function. This customization includes setting the PLLs, the HPS memory controller registers, the HPS I/O banks
and implementing the necessary pin muxing.

When the board initialization is complete the code will stop at the next breakpoint, spl_mmc_load_image. At this point it has
examined the BOOTSEL jumper settings. It will attempt now to load the next loader from the SD card and run it out of DDR3
memory. At this point if the debugger becomes unstable and the next stage is unsuccessful, there is a good chance that the
settings for the memory controller need to be fine tuned.

 Press the the F5 key to enter the spl_board_init function

 Examine the code.

The flow diagram on the following page gives a good description of the order of operations taken to initialise the HPS. For
more details please visit the preloader rocketboards page at

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

Line 330 -409. Configure the main, peripheral and sdram PLL groups

Line 420 -429. IO Bank pins are configured via HPS I/O Scan chains. Freeze the IO banks before beginning the scan operation

Line 441 - 447. Reset all peripherals and bridges except for the L4 watchdog.

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 38

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 39

Line 462 - 464. Timer used during PLL reconfig

Line 477 - 481. Reconfigure the PLLs. Any board level issues related to clock inputs could result in a problem here. On the

SoCKit the HPS CLK0 was double the specified frequency. Executing this step caused the system to hang. This provided a good

clue and the problem was resolved soon after.

Line 499. Handshake the bootloader.

Line 504 - 520. The Scan Manager configures the HPS I/O via the scan chain.

Line 547. The System Manager sets the appropriate pin muxing for the HPS peripherals that were selected in Qsys. Stepping

into this code will reveal that it uses the pinmux_config.h that was generated by the bsp-editor based on Qsys peripheral

selections.

Line 586 - 595. Unfreeze the HPS I/O banks.

Line 605. Enable UART printing. The first line of code is printed to Putty from here.

Line 635. SDRAM Memory Manager initialization.

Line 644. SDRAM Calibration.

Line 720 - 747. Setup and enable exceptions.

3. Run the preloader code

 Press the the F7 key to step out of the spl_board_init function

 Examine the PuTTY console. You should see the following

 Press the F8 (Continue key) to get to the breakpoint at line 245.

Generate, Build and Run the Preloader

SoCKit SW Lab Instructions, Version 14.1 40

Read the following paragraph but DO NOT implement

The next logical step would be to insert the SD Card and press F8. The preloader would attempt to load U-Boot from the SD

card. It would first transition from running code out of Onchip RAM on the HPS to the DDR3 memory. If successful, you would

see the system boot U-Boot and Linux. Any instability in this process would possibly point towards memory timing issues.

Tuning of the memory timing in Qsys would be potentially required to resolve this.

However we will not do this since Module 4 requires DS-5 to still be connected to the target.

CONGRATULATIONS!!

You have generated, built and run the SoC preloader.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 41

MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS)

It is important to understand how the HPS and FPGA systems are combined into a common address map as seen by the ARM

Cortex A-9 MPU.

First examine the memory map of the SoC as seen by the Cortex A-9 MPU. FPGA slaves connected to the high bandwidth

HPS2FPGA bridge are mapped starting at 0xC000 0000 (3GB). The Onchip RAM is connected to this bridge. This bridge has a

span of 960MB.

The HPS peripherals are mapped at 0xFC00 0000 with a 64MB address span.

The SysID, PIO LED, PIO Button and PIO DIPSW FPGA slaves are all connected to the low bandwidth LWHP2FPGA bridge. This

bridge is mapped within the HPS peripherals span starting at 0xFF20 0000. The span of this region is 2MB since it is only

required for control / status access.

The offset addresses of the FPGA slave peripherals relative to the base of the LWHPS2FPGA bridge are shown above.

So for example the LWHPS2FPGA bridge is mapped at 0xFF20 0000. The LED PIO will be offset from that base by 0x0001 0040.

The resulting address for the LED PIO is 0xFF21 0040.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 42

4.1 Validate the FPGA Peripherals from DS-5

Use the DS-5 Debug perspective Register tab to manually peek and poke the control, status and data registers of the FPGA

peripherals that were defined in Qsys.

1. Use the Registers tab to access the FPGA peripherals.

The registers tab can be used to address all memory mapped entities within the HPS and the FPGA. It is a convenient way to

validate newly created FPGA peripherals.

 Select the Registers tab. Press the expander adjacent to the Peripherals field to see a complete list.

An incomplete list of peripherals is shown below. The peripherals that were added to the FPGA in the Qsys system are listed

as altera_avalon_<peripheral_name>. All other listings are standard HPS peripherals.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 43

The FPGA list of peripherals is dependent on what was added to the Qsys system. This information is passed to the DS-5 via

the SVD xml file that Qsys generates. Recall that it was referenced in the Debug configuration setup in the Files section.

2. Exercise the FPGA led_pio peripheral.

There are three bridges that connect the HPS and FPGA portion of the SoC. Two of them are meant for high bandwidth data

transactions (HPS2FPGA and FPGA2HPS). There is a third bridge (LWHPS2FPGA) that is intended as a control / status path for

the HPS into the FPGA. This bridge allows the HPS to separately control low bandwidth FPGA peripherals without interrupting

the flow of data on the high bandwidth paths.

These bridges are by default left in a reset state after power on and must be removed from this state.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 44

View the Bridge Reset Status within the Reset Manager

 Navigate to the rstmgr peripheral and press the expander .

 Locate the rstmgr_brgmodrst register.

 Take note of its value

When the preloader ran it detected that the FPGA was configured and thus released all three bridges from reset. You are

now able to access the FPGA peripherals.

Expand the LED_PIO peripheral.

The programming model for the LED PIO can be found in Chapter 12 of the Embedded Peripherals Users Guide.

The PIO is four bits. Each output bit is connected to an LED. A bit value of one will turn the LED on and a value of zero will

turn it off. The FPGA LEDS are located near the Altera and Linear Technology logos.

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 45

 Navigate to the altera_avalon_pio_led_pio_s1 peripheral and press the expander .

 Locate the altera_avalon_pio_led_pio_s1_DATA register.

 Type F in the data field to turn all the LEDs on.

 Type 0 in the data field to turn all the LEDs off.

 Type 1,2, 4 or 8 to turn individual LEDs on.

5. Use the HPS GPIO peripheral to turn on the HPS LEDs.

It also is possible to communicate with all HPS peripherals via the Registers tab. Four HPS LEDs are connected to GPIO pins

[56..53] . These map to bits [27..24] in HPS register gpio1. The four HPS LEDs are located to the left of the four FPGA LEDs.

 Navigate to the gpio1 peripheral and press the expander .

 Locate the gpio1_gpio_swporta_ddr register. This is the data direction register. A gpio bit is an output if its

corresponding ddr bit is set to a one. Set the seventh nibble to an F. All four gpio connected to the LEDs are

now outputs.

 Locate the gpio1_gpio_swporta_dr register. This is the data register. Change the data in the seventh nibble

of the data register to turn the LEDs on or off

 Type 0 in the data field to turn all the LEDs off.

 Type F in the data field to turn all the LEDs on.

 Type 1,2, 4 or 8 to turn individual LEDs on.

 For more information on the GPIO , refer to the General-Purpose I/O Interface.
 For more information on the HPS memory map refer to Address Map information for the HPS

http://www.altera.com/literature/hb/cyclone-v/cv_54022.pdf?GSA_pos=3&WT.oss_r=1&WT.oss=hps%20gpio
http://www.altera.com/literature/hb/cyclone-v/hps.html

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 46

 Stop. Do NOT turn off the power. You MUST first disconnect the DS-5 from the target and then remove all

connections for a clean session termination.

 Press the "Disconnect from Target" button.

 Press the "Remove Connection" button.

 Exit DS-5. File --> Exit

4.2 Validate the FPGA Peripherals from a simple Linux Application

This section continues the philosophy of incrementally validating the FPGA peripherals that were added to the HPS in Qsys.

The FPGA peripherals will now be validated from within the Linux operating system by way of a simple Linux application.

Linux has a virtual addressing scheme, so the application has to acquire a virtual address that represents the physical

beginning of the HPS peripheral space. A simple application, " led_blink" was created as an example of how to validate FPGA

peripherals from within a Linux application. An examination of the code below shows the mapping function implemented.

Once the mapping function has been called the virtual base is used to manipulate HPS and FPGA LEDs via their respective PIOs.
The memory map of the FPGA peripherals is provided in a header file (hps_0.h) that was generated by a utility called. sopc-
create-header. The alt_setbits and alt_clr_bits functions are used to turn the LEDs on and off.

This application can be either built in a cygwin shell in Windows or on a Linux Host. In this section you will build this
application within the cygwin shell, secure copy it to the target via ethernet and then execute it.

Provide the mmap function with HPS

peripheral base and span and it returns a
virtual mapping. Use this virtual base to

address any peripherals with the HPS

space including those mapped through

the LWHPS2FPGA bridge.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 47

1. Connect the Linux target (SoCKit) to the laptop via Ethernet

Since here is no router available, you will directly connect the laptop to the target using the provided Ethernet cable.
We will provide the laptop and the target with fixed IP addresses. There is no need for a (Rx/Tx) crossover adaptor since most
modern Ethernet PHYs can perform the crossover internally.

Configure the laptop network adaptor.

 Type ncpa.cpl in the Windows search field. Press enter. Select the appropriate ethernet adaptor. Right click

and select Properties.

 Select Internet Protocol Version 4. Press Properties. Setup the IP address as shown below (192.168.2.13).

Press OK.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 48

2. Connect to the Linux target (SoCKit).

 Open PuTTY. Set it to Serial, 115200, COMxx

3. Warm reset and boot Linux

 Insert the SD Card.

 Press the WARM_RST button. It is located on the bottom left corner of the SoCKit. See the snapshot below.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 49

 Wait for Linux to boot. Press enter at the terminal prompt and login as root.

 Create a password. It will be required later for the SCP (secure copy function). Type "passwd" and enter root

when prompted.

Assign the target board a fixed IP address

 At the prompt type ifconfig eth0 192.168.2.12 up. Press enter.

 Ping the host. Type ping 192.168.2.13. Press enter. Press Ctl C to abort ping.

4. Halt the 'scroll_server' led process and clear the leds

 Type ./init_leds.sh. Press enter

5. Build the "led_blink" example

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 50

 Open an Embedded Shell

 CD to c:\altera_trn\SoCKit\SoCKit_SW_lab_14.1\software\led_blink

 Type ./build_script.sh and press enter.

6. Use SCP to copy the executable to the target via Ethernet.

 Type scp led_blink root@192.168.2.12:/home/root. Press enter. This will take the local file "led_blink" and

securely copy it to the target at 192.168.2.12. It will place it in the /home/root folder.

 Navigate back to the target console.

 Type ls at the prompt.

 Change the permissions of led_blink. At the prompt type chmod 555 led_blink. Press enter.

7. Execute the led_blink application.

 Type ./led_blink at the target console prompt. Press enter. The LEDs will blink for a few seconds.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 51

4.3 Validate the FPGA Peripherals using Linux Device Drivers (Modules)

In this module you will run a few shell scripts. These scripts will turn the FPGA and HPS LEDs on and off. The difference in this

exercise is that there is no explicit reference to memory map addresses or bit locations. You will also install a module that

registers an interrupt and prints a message when that interrupt occurs

1. Examine the installed devices

 All the drivers associated with LEDs and gpios are loaded with the linux kernel and when the gsrd_init.sh script is

 loaded as part of the system initialisation at boot up.

 Bring the PuTTY console to the foreground. Type cd ~ . Press enter.

 Type ls. Press enter. Examine the directory contents.

 Type cd /sys/class/leds. Press enter. Type ls. Press enter.

Notice how each led (hps or fpga) now appears as an individual device. Take note of the naming syntax.

 Type cd~ . Press enter.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 52

2. Run the led_blink_devices script

 This script will blink all the fpga and hps LEDs.

 Type cat led_blink_devices.sh. Press enter. Examine the contents of the script.

Notice that the echo command is being used to pipe data to each individual led (fpga & hps). There is no knowledge of the

custom FPGA hardware that was created using Qsys. There is also no knowledge of the custom GPIO assignments that were

made for the HPS leds. In the next section you will examine how the driver gets this information from the Qsys system tool.

 Type source ./led_blink_devices.sh. Press enter.

3. Detect the user pushbutton

Install the gpio_interrupt module. The module is installed using the following syntax

 modprobe gpio_interrupt gpio_number=<n>

GPIO numbers are automatically assigned by the kernel based on device tree entries. The GPIO number must be correlated

with its associated gpiochip in order to determine which interrupt is being asserted.

Examine all the available gpiochips's that are registered by the kernel.

 Type 'ls /sys/class/gpio' at the prompt. Press enter.

Match the label of the GPIO chip to the address of push button and DIP switch in device tree

 Type 'cat /sys/class/gpio/gpiochip169/label' at the prompt. Press enter

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 53

Note that the offset address of the pushbutton (button_pio) in the FPGA match those of gpiochip169. A match has been

found.

Register gpiochip169 with the gpio_interrupt module in order to detect any pushbutton interrupts. Since there are two

pushbutton inputs in the button_pio component, gpio_numbers 169 and 170 are allocated to gpiochip169.

 Type 'modprobe gpio_interrupt gpio_number=169' at the prompt. Press enter.

 Press the the pushbutton 0 on the SoCKit board to activate the interrupt

Remove the gpio_interrupt.

 Type 'rmmod gpio_interrupt' at the prompt. Press enter

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 54

4.4 Examine the Device Tree Blob (DTB)

This section focuses on the flow of system information from the .sopcinfo file to the Device Tree.

The Device Tree standard specifies hardware connectivity so that Linux kernel can boot up correctly. For more on the

device tree click on this link Devicetree.org

The diagram below shows the detailed connection from the Qsys system definition file (.sopcinfo) to the Device Tree

Source (DTS) file, which is readable text, and finally to the Device Tree Blob (DTB) which is a binary format. The

DTB is placed in the FAT partition of the SD card and is read by U-Boot and placed in DDR3 memory. It is read by the

Linux kernel at boot time.

http://devicetree.org/Main_Page

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 55

1. Examine the Device Tree Source (DTS)

Examine a section of the Device Tree Source file for the

SoCKit. This section describes the LEDs connected to

the FPGA and to the HPS.

As seen in Module 4.3 a high level device access

requires no specific hardware knowledge of that device.

That specific hardware knowledge is passed from the

HW design via the sopcinfo file and placed in the DTS

file. The kernel reads that information and passes it to

the specific module (device driver).

Examine fpga_led3 and hps_led3. The DTS entry for

fpga_led3 specifies that it is connected the LED_PIO

peripheral on bit 3. LED_PIO was added to the system

using Qsys in the HW lab section. The base address

offset for the LED_PIO is also specified in the DTS.

In the case of hps_led3 the DTS indicates that it is

connected to the GPIO pin that is driven by GPIO

register 1 on bit 24. The base address offset for GPIO

register 1 is also specified in the DTS.

Automatic generation of the DTS is now supported in

Quartus II 14.1.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 56

2. Examine the Device Tree Blob (DTB) in U-Boot

Reboot the SoCKit and halt U-Boot before it loads Linux

 Type poweroff. Press enter. Wait until you see "System halted"

 Press the WARM_RST button and then press any key (within 5 seconds) to halt U-Boot autoboot. The

WARM_RST button is located on the bottom left corner of the SoCKit. See the snapshot below.

Examine the contents of the SD card FAT partition.

 Type fatls mmc 0:1. Press enter. This displays the contents of the fat partition on the SD card.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 57

Load the Device Tree Blob into Memory.

 Type fatload mmc 0:1 0x100 soc_system.dtb. Press enter. This loads the DTB from the SD card and places it
in DDR3 memory at 0x100.

Examine the contents of the Device Tree Blob

 Type fdt addr 0x100. Press enter. This assigns 0x100 to the fdt system variable addr.

 Type fdt print. Press enter. This reads the binary DTB converts it to clear text and displays it. Wait for the

text to stop scrolling. The content on the display will now look familiar. This is exactly what the kernel will see

but in a binary format.

Validating the FPGA Peripherals from the Hard Processor System (HPS)

SoCKit SW Lab Instructions, Version 14.1 58

2. Examine the Device Tree in Linux

The device tree can also be viewed from within Linux.

 Type bootd at the u-boot prompt. This will boot linux from the SD card.

 login as root

 Type ls /proc/device-tree/sopc@0. Press Enter.

CONGRATULATIONS!!

You have validated the FPGA peripherals

For more detailed information on how to build u-boot and Linux for the SoCKit please visit the Golden

System Reference Design (GSRD) page for the SoCKit on rocketboards.org

http://www.rocketboards.org/foswiki/Documentation/GSRDUserManualArrowSoCKitEdition

Taking the Next Step

SoCKit SW Lab Instructions, Version 14.1 59

MODULE 5: Taking the Next Step

Altera has a number of resource available to assist you in further product development at www.altera.com/embedded

Some of the resources available are:

Visit the rocketboards.org community web site

http://www.rocketboards.org/foswiki

**** Start here ****

http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition

Arrow SoCKit Evaluation Board support site

http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard

Altera SoC Development Board support site

http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard

Get more information about the SoC HPS

 Hard Processor System Technical Reference Manual

 http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf

Get more information about the SoC Embedded Design Tools

 Embedded Software for the Cortex-A9 MPCore Processor

 http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html

Get additional SoC training (discounted from $695 per course to $99 for workshop attendees)

 Designing with an ARM based SoC

 http://www.altera.com/education/training/courses/ISOC101

 Developing Software for an ARM based SoC

 http://www.altera.com/education/training/courses/ISOC102

For all resources visit www.altera.com/embedded

http://www.altera.com/embedded
http://www.rocketboards.org/foswiki
http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html
http://www.altera.com/education/training/courses/ISOC101
http://www.altera.com/education/training/courses/ISOC102
http://www.altera.com/embedded

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 60

MODULE 6: Cross Triggering (Do at home Exercise)

Working with the Altera SignalTap™ II Logic Analyzer, the DS-5 toolkit provides advanced, signal-level hardware cross

triggering between the CPU and FPGA domains. Using this capability, the software and FPGA designers can analyze the

captured trace and co-debug across hardware-to-software bounds. In this Module you will first learn how to use SignalTap II

to trigger the DS-5 tool. You will then use a breakpoint or a manual trigger to cross trigger SignalTap II.

Perform these steps first.

 1. Power on the SoCKit

 2. Boot to the Linux prompt.

 3. Login as root

 4. Kill the led scroll server. Type ‘./init_leds.sh’ at the linux prompt.

 4. Launch DS-5

ARM DS-5 Toolkit

SignalTap II Logic Analyzer

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 61

6.1 Configure Cross Triggering on the HPS

Configurations can be exported and imported within DS-5. This can be convenient when working as a team. In the context of

this lab it assists since the user can re-use an existing configuration. In this instance you will be tracing and cross triggering the

Linux kernel.

1. Import the desired Debug Launch Configuration.

 From the menu select File --> Import. Select Launch Configurations. Press Next.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 62

 Press the Browse button and navigate to the configurations sub directory. Press OK. Select both check boxes

in the Import Launch Configurations window and press Finish.

2. Review the imported debug launch configuration.

 From the menu select Run --> Debug Configurations

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 63

 From the menu select Run --> Debug Configurations

 Select the "Debug_Linux_DevKit" configuration

 Select the Connection tab

 Refresh the connection. Press the Browse button. Select the Debug Harware. Press OK.

 Examine the DSTL options. Press the DSTL Edit button.

 Check the Enable FPGA --> HPS Cross Trigger for the first example.

 Check Assume Cross Triggers can be accessed.

 Select the Trace Buffer tab. Select the System Memory Trace Buffer (ETR).

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 64

 Select the Cortex-A9 tab. Check the options as shown below.

 Select the ETR tab. Press OK.

A 4KB Embedded Trace Buffer (ETR) has been selected at system address 0xC000 0000. Where is this buffer physically

located? Recall the GHRD block diagram. The HPS2FPGA bridge is located in the HPS memory map at address 0xC0000

0000. The Onchip RAM was added to the design in Qsys and is located at HPS2FPGA Bridge offset 0x0000 0000.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 65

6.2 Configure Cross Triggering on the FPGA

SignalTap II allows developers to embed a Logic Analyzer within the FPGA. It has the ability to monitor and capture FPGA

signal activity at full data rates. Signals of interest are defined by the designer as are the trigger settings. SignalTap II can

receive external triggers and also transmit triggers to other applications.

1. Launch SignalTap II.

 Start --> All Programs --> Altera 14.1.0.186 --> Quartus II Programmer and SignalTap II 14.1.0.186 -->

Quartus II 14.1 SignalTap

2. Load the SignalTap II definition (stp) file

 File --> Open. Navigate to c:\altera_trn\SoCKit\SoCKit_SW_lab_14.1

 Select the stp1.stp file. Press the Open button

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 66

3. Observe the SignalTap II setup

 Five led_pio peripheral signals have been selected: address, chipselect, out_port, write_n and writedata.

 Notice that the trigger is set on the falling edge of write_n.

 Notice that both the HPS trigger out and HPS trigger in options have been enabled.

 Some of the options are grayed out because you are using the standalone version of SignalTap II.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 67

6.3 Cross Triggering Examples:

Example 1: FPGA --> HPS

1. Arm the SignalTap II trigger

 Press the Run Analysis button.

2. Start the DS-5 Debug configuration

 Run --> Debug Configurations. Select Debug_Linux_DevKit. Press Debug.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 68

 Allow Linux to run by pressing F8 or the green Continue button

3. From within Linux turn the FPGA led on. This will cause SignalTap to trigger. In turn it will fire a trigger output to the HPS

causing it to stop. The debugger will show the state of the two Cortex-A9 cores and will display the trace information.

 Type "echo 0 > /sys/class/leds/fpga_led0/brightness" at the Linux prompt. Press enter.

 SignalTap triggers on the falling edge of write_n.

 SignalTap sends a trigger out signal to the HPS which causes a halts exception within DS-5.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 69

At this point it is worth examining the sequence of events that occurred.

 1. The echo command is entered at the Linux prompt
 2. The command traverses through the Linux kernel.
 3. The appropriate module issues the write led command.
 4. SignalTap triggers on the falling edge of the write_n signal and immediately sends a trigger out signal to the HPS.
 This causes a halt exception within DS-5.
 5. DS-5 then follows by capturing the trace and displaying it as seen below.

Note the each time you execute this sequence of events the trace captured by DS-5 will most likely be different because we
are tracing the kernel and not an application.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 70

Example 2: HPS --> FPGA

1. Disconnect the DS-5 from the target

 Press the "Disconnect from Target" button.

 Press the "Remove Connection" button.

2. Modify the DS-5 Debug Configuration settings

 Run --> Debug Configurations.

 Select the Debug_Linux_DevKit configuration.

 Select the Connection tab. Press Edit to modify the DSTL options.

 Select the Cross Trigger tab.

 Disable the Enable FPGA -> HPS Cross Trigger

 Enable the Enable HPS -> FPGA Cross Trigger

 Press OK. Press Debug to start the debug session.

 Press the F8 (Continue) button.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 71

3. Modify the SignalTap II settings

Change the trigger settings in SignalTap II. Remove the write_n falling edge as a trigger and replace it with a HPS rising edge

trigger input.

 Bring SignalTap II to the foreground

 Select the Setup tab.

 Right click on the cell adjacent to the write_n node as shown below. Click on Don't care.

 Click on the HPS trigger out Pattern select as shown below. Select Rising Edge.

 Press the Run Analysis button.

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 72

4. SignalTap will NOT trigger until it receives the trigger input from the HPS. The HPS will transmit the trigger signal if it hits a

breakpoint or if it is manually interrupted.

In this example you are arbitrarily halting the HPS. It would be more meaningful if it halted on a breakpoint directly after the

led was written to. This is not possible in this scenario since we are source level debugging the kernel and not the gpio-altera

module.

 Bring DS-5 to the foreground.

 Break the HPS execution by pressing F9 (Interrupt)

Cross Triggering (Do at home Exercise)

SoCKit SW Lab Instructions, Version 14.1 73

CONGRATULATIONS!!

You have successfully used the cross triggering debug tools

