

SoCKit HW Lab Instructions, Version 14.0 1

SoC Hardware Lab Instructions

Table of Contents

OVERVIEW 3

MODULE 1. Getting Started ... 6

1.1 Acquiring Cyclone V SoCKit ... 6
1.2 Install the Altera Design Software .. 7
1.3 Extract the SoCKit Lab Files. ... 15
1.4 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop) 16
1.5 Install the USB Blaster II Device Driver (Complete this at the Workshop) ... 19

MODULE 2. Examine the System Design .. 22

2.1 System Architecture ... 22
2.2 Examine the System Tool Flow.. 23
2.3 Examine Arrow's Cyclone V SoCKit... 24
2.4 Block Diagram of the SoCKit .. 25

MODULE 3. Set up the Quartus II project .. 26

3.1 Launch Quartus II Project .. 26

MODULE 4. Build the Qsys System .. 28

4.1 Launch Qsys... 28
4.2 Build the Qsys System ... 29

4.2.1 Configure the FPGA Interfaces for the HPS .. 31

4.2.2 Configure HPS' Peripheral Pin Multiplexing (MAC, NAND, QSPI, SDIO, USB) 35

4.2.3 Configure HPS Clocks .. 40

4.2.4 Configure SDRAM (The HPS External Memory Interface) .. 49

4.2.5 Configure LED PIO ... 55

4.2.6 Configure Button PIO ... 57

4.3 System Configuration ... 59

4.3.1 Connect HPS interfaces to FPGA Peripherals... 59

4.3.2 Set IRQs ... 61

4.3.3 Set Base Addresses ... 63

4.4 Generate the System ... 69

Version 14.1 02/03/2015 Tutorial

OVERVIEW

SoCKit HW Lab Instructions, Version 14.1 2

MODULE 5. Complete the Quartus II Project .. 73

5.1 Set up the Quartus II project to point to the correct files ... 73
5.2 Analysis and Synthesis .. 77
5.3 Adding Pin assignments ... 77
5.4 Compile (Optional step for this lab) .. 78

MODULE 6. Hardware Debug Flow (System Console) .. 85

6.1 Downloading and Programming FPGA .. 80
6.2 Executing System Console Scripts .. 85
6.3 Experiments with the System Console Window (Optional) ... 89

MODULE 7. Hardware Validation with Simulation (Do at home Exercise) ... 90

7.1 Installing ModelSim-Altera ... 91
7.2 Set EDA Tool Settings in Quartus II ... 95
7.3 Run RTL Simulation ... 96
7.4 Validate simulation ... 99

MODULE 8. Taking the next Step .. 100

SoCKit HW Lab Instructions, Version 14.0 3

OVERVIEW

The Altera SoC combines a Hard Processing System (HPS) and an FPGA on a single device. The HPS has dual core ARM Cortex-

A9 MPUs and a host of peripherals such as DDR3 controllers, Ethernet MACs, SPI controllers and many more. The FPGA

portion of the device is tightly coupled through high performance bridges to the HPS. The designer can add peripherals they

create or from third party IP to the FPGA and map it into the HPS. Thus you have a flexible and very powerful solution.

This hardware lab provides an answer to following questions that a hardware developer might have:

 How do I build a complete customized HPS SoC system?

 How do I create a HPS in Qsys to realize a custom ARM SoC system with bridges to the FPGA?

 How do I configure the HPS in Qsys to realize a unique set of HPS peripherals for a custom SoC system?

 How do I use standard Qsys components to create a customized set of FPGA peripherals for my SoC system?

 How do I use System Console to verify the peripherals in my SoC system are working properly?

 How do I use ModelSIM to simulate and therefore validate the peripherals in my SoC system?

The HPS is configured using Qsys, Altera's SoC/FPGA IP integration tool. Configuration includes selecting DDR memory,

determining clock frequencies and selecting which HPS peripherals your design will use. As such Qsys inherently has most of

the information to satisfy the questions asked above. Qsys is also used to define the HPS peripheral pin outs and Quartus is

used to define the FPGA peripheral pin outs.

These two Altera FPGA development tools will generate the files needed for the transfer of design information from the

hardware to the software domain. A portion of the hardware modules will create a set of handoff files that are required to

build a preloader, a system register set (including FPGA registers) and the files required to create a Device Tree that will

support any operating system. For instance, the .socpinfo file will be used by the software designer to create a Device Tree

which will in turn be utilized to provide an interface for the Device Drivers in Linux or other operating system.

Qsys creates the files required for Hardware to Software domain transfer:

The diagram below shows three main areas of transfer from the hardware to software domains.

1. The files necessary to create a custom preloader

2. The .svd file that describes the FPGA peripherals and is used by the DS-5 register function

OVERVIEW

SoCKit HW Lab Instructions, Version 14.1 4

3. The sopcinfo file that describes all of the HPS devices selected in Qsys and also those custom peripherals added in the

FPGA. These are used to build a device tree. The device tree is used by the Linux kernel to determine which device drivers to

load at boot time.

Hardware Module Summary:

The Hardware labs are based on completing the Golden Hardware Reference Design (GHRD) that is provided with the SoCKit.

You will examine the architecture of the GHRD in Module 2.

In Module 3 you will learn how use Quartus II to create a Quartus II project. In Module 4 you will utilize Qsys to build your HPS

based SoC system complete with a set of HPS peripherals to interface to the peripherals on the SoCKit. Next, you will create a

custom set of FPGA peripherals to interface to the HPS that also interface to peripherals on the SoCKit.

In Module 5 you will see how to complete the Quartus II project to include pin assignments and timing constraints for the HPS

and FPGA peripherals that were instantiated in Qsys.

In Module 6 you will see how to validate the peripherals created in the FPGA using system console.

Module 7 is a bonus lab that shows how to utilize ModelSIM for Hardware validation of the FPGA peripherals that were

created in Qsys.

OVERVIEW

SoCKit HW Lab Instructions, Version 14.1 5

Goal of this Hardware Lab:
The goal of this hardware lab is to customize the SoC hard processor system (HPS) and build custom peripherals that will be
integrated with the HPS. Altera's SoC has the flexibility and customizability of adding additional peripherals to the FPGA by
using Qsys.

The SoC and the custom peripherals will in turn be used by the software lab where the peripherals will be accessible by the
Linux system.

This lab teaches you how to customize the HPS and peripherals. As the lab progresses, you will see how quick and easy it is to
build entire systems using Altera's system integration tool, Qsys, to configure and integrate pre-verified IP blocks.

Caution:

Do not continue until you have read the following:
The names that the lab document directs you to choose for files, components, and other objects in this exercise must be
spelled exactly as directed.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 6

MODULE 1. Getting Started

Your first objective is to ensure that you have all of the items needed and to install the tools so that you are ready to create

and run your design.

List of Required Items:

 Arrow Electronics SoCKit development board

 Quartus II v14.1 Web Edition

 Computer with Windows 7, 4 GB RAM, minimum of I3 core and over 10 GB free hard disk space for the Quartus II
install

 Lab Design Files

1.1 Acquiring Cyclone V SoCKit

To order a SoCKit please click on the link below

Order an SoCKit from Arrow Electronics

http://components.arrow.com/part/search/sockit?region=na

Getting Started

SoCKit HW Lab Instructions, Version 14.1 7

1.2 Install the Altera Design Software

You will need to install the following design software package:

 Quartus II Web Edition design software v14.1. – FPGA synthesis and compilation tool that contains QSys and
the MegaCore IP library with the SoC processor

The following steps will guide you through the installation instructions. Quartus II Web Edition can be downloaded from the
Altera web site. Please carefully follow the steps shown below.

 Go to the Altera Download web page at https://www.altera.com/download/dnl-index.jsp

 Select "Quartus II Web Package 14.1. Press the Free Web Package button.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 8

 Select Quartus II Web Edition, Windows:

 Select the “Individual Files” Tab

 Select the “ Download Selected Files” Button

 Download the Quartus II software files onto your computer.

 Login to myAltera account. Use your existing login, or Create Your myAltera account.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 9

 Select a download folder (Make New Folder for v14.1)

 The files will then be downloaded via the Download Manager

 After the file is downloaded on the computer, select the *.exe file, and install the software.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 10

 Accept the license agreement, then “Next >”.

 Select the default installation directory, then “Next >”
(If a different directory is selected, then the path cannot include spaces).

Getting Started

SoCKit HW Lab Instructions, Version 14.1 11

 Select Quartus II Web Edition, Cyclone V under Devices and ModelSim-Altera Starter Edition for the
installation, then “Next >”

 Ready to install, select “Next”:

Getting Started

SoCKit HW Lab Instructions, Version 14.1 12

 The installation of QII Web Edition and Cyclone V Device Family will begin:

 The installation will continue with ModelSim Starter Edition:

Getting Started

SoCKit HW Lab Instructions, Version 14.1 13

 Install the USB Blaster II Driver, select “Finish”

 Select “Next >”

Getting Started

SoCKit HW Lab Instructions, Version 14.1 14

 Select “Install”

 Select “Finish”

 Select -> All Programs -> Altera 14.1.0.181 Web Edition -> Quartus II Web Edition 14.1.0.181 ->
Quartus II 14.1 (64 bit)

Getting Started

SoCKit HW Lab Instructions, Version 14.1 15

 Enable TalkBack

If splash screen above doesn’t appear, then select: Tools -> Options. Under Category select: “TalkBack
Options” Then you can Enable TalkBack

1.3 Extract the SoCKit Lab Files.

 Create a folder c:\altera_trn on your PC.

 Click on the following link to download SoCKIT_Materials_14.1.zip

 Save it to c:\altera_trn on your PC

 Extract the SoCKIT_Materials_14.1.zip file to this folder

 The c:\altera_trn directory should look like this

http://www.rocketboards.org/pub/Documentation/ArrowSoCKitEvaluationBoard/SoCKIT_Materials_14.0.zip

Getting Started

SoCKit HW Lab Instructions, Version 14.1 16

1.4 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop)

Please connect cables to the connectors shown in the diagram below. All cables are provided in your SoCKit.

 Connect the micro or mini (Rev E) USB cable to the USB host connector on your laptop and to the USB Blaster

II connector on the SoCKit.

 Connect the Power Supply to the Power connector on the SoCKit.

 There are a few jumpers that require configuring before proceeding with the labs.

 BOOTSEL[2..0] jumpers. These should be configured as "100" to select boot from SD card 3.3V

 CLKSEL[1..0] jumpers. These should be configured as "00" for the slowest HPS peripheral clock speed

option.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 17

Please ensure that the jumpers are configured as indicated below.

Modify the default MSEL bit settings. The board needs to be set to configure in the FPPx32, fast, compressed mode.
This will allow u-boot to configure the FPGA.

 SW6 is located on the bottom side of the SoCKit.

 Please change MSEL[0:4] to 01010.

Verify that the JTAG chain is correctly configured. The JTAG chain switch is located in to the right of the green audio

connector.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 18

 HSMC_EN should be disabled (left position) and the HPS_EN should be enabled (right position).

Getting Started

SoCKit HW Lab Instructions, Version 14.1 19

1.5 Install the USB Blaster II Device Driver (Complete if you didn’t install with Quartus II in section 1.2)

 Turn your SoCKit on.

 Open a NIOS II 14.0 Command Shell, select -> All Programs -> Altera 14.1.0.186 Web Edition -> NIOS II
EDS 14.1.0.186 -> NIOS II 14.1 Command Shell

 Type jtagconfig at the prompt and press enter.

 If the jtagconfig command fails, then complete the following steps

 Press the Windows Start button. Enter devmgmt.msc. Press enter to open the Device Manager.

 Navigate to Other Devices in the Device Manager. Expand it to see Unknown Device

 Right click on Unknown Device. Select Update Driver Software.

Getting Started

SoCKit HW Lab Instructions, Version 14.1 20

 Select Browse my computer for driver software.

 Specify the driver software location. Press Next.

 Click Install on the next Screen

Getting Started

SoCKit HW Lab Instructions, Version 14.1 21

 Wait for the driver to complete its installation. Press Close. Notice that device is considered to be
Unconfigured.

 Open a NIOS II 14.1 Command Shell, select -> All Programs -> Altera 14.1.0.186 Web Edition -> NIOS II
EDS 14.1.0.186 -> NIOS II 14.1 Command Shell

 Type jtagconfig at the prompt and press enter.

CONGRATULATIONS!!

You have just completed all the setup and installation requirements and are now ready to examine the

system-level design.

Examine the System Design

SoCKit HW Lab Instructions, Version 14.1 22

MODULE 2. Examine the System Design

Module Objective

In this module you will review the architecture of the design that will be created in Qsys. You will also examine the

layout of the SoCKit. Developing software for an Altera SoC requires an understanding of the design flow of the

Qsys system integration tool. Typically, a design starts with system requirements. These system requirements

become inputs to the system definition. System definition is then first step for implementation in the design flow

process.

2.1 System Architecture

There are many

components on the SoCKit

that can be used, including

the LCD, flash, Audio DACs,

and IR.

The system that we will

finish creating in Qsys is

built by using a standard

library of re-useable IP

blocks. The orange section

of this diagram is the HPS

section, while the green

section is the FPGA section.

The HPS section was

configured in the HPS

component in Qsys. There

are three bridges between

the HPS and FPGA sections.

You will focus on the

LWHPS2FPGA bridge

connected peripherals for

this lab, specifically the

LED PIO. The LED PIO is

mapped through the

bridge into the HPS

addressable map.

Examine the System Design

SoCKit HW Lab Instructions, Version 14.1 23

2.2 Examine the System Tool Flow

The diagram above depicts the typical flow for an SoC design. Qsys and Quartus II generate the following sets of files:

 A set of XML files are created that define the system description. These XML files are utilized by the ARM DS-

5 software tool to create a project for the software application. You can find the files here:

Examine the System Design

SoCKit HW Lab Instructions, Version 14.1 24

 Qsys also generates the HDL files (Verilog or VHDL) for the defined system. These HDL files are then used by
Quartus II to compile and generate a set of files that defines the hardware system. This set of files includes
the HDL files, Tcl (Tool Command Language) files that define dedicated pin locations for selected HPS
peripherals, Tcl files that define the Multiport Memory Controller in the HPS & FPGA, QIP files that include:
selected IP and SDC (Synopsis Design Constraint files) utilized by TimeQuest to constrain the complete system
design.

 Quartus II will then generate a simple SOF (SRAM Object File) image that is used to configure the FPGA.

2.3 Examine Arrow's Cyclone V SoCKit

Examine the components on the Cyclone V SoC board hardware:

http://www.google.com/url?sa=t&rct=j&q=quartus%20qip%20file&source=web&cd=1&cad=rja&sqi=2&ved=0CC0QFjAA&url=http%3A%2F%2Fquartushelp.altera.com%2Fcurrent%2FmergedProjects%2Freference%2Fglossary%2Fdef_qip_file.htm&ei=YWKEUZyeLcXi0gGDyYDICQ&usg=AFQjCNGdctGwD
http://www.alterawiki.com/wiki/Timequest?GSA_pos=1&WT.oss_r=1&WT.oss=TimeQuest

Examine the System Design

SoCKit HW Lab Instructions, Version 14.1 25

2.4 Block Diagram of the SoCKit

There are many components included on the SoCKit, including the LCD, flash, Audio DACs, and IR.

A block diagram of the board:

CONGRATULATIONS!!

You have just completed the examination of the system-level design

Set up the Quartus II project

SoCKit HW Lab Instructions, Version 14.1 26

MODULE 3. Set up the Quartus II project

In this section, you will open a Quartus II project that contains the Qsys system. In addition, you will specify I/O constraints

and settings for this design by executing a Tcl script.

3.1 Launch Quartus II Project

 Launch the Quartus II v14.1 software: Select -> All Programs -> Altera 14.1.0.186 Web Edition ->
Quartus II Web Edition 14.1.0.186 -> Quartus II 14.1 (64 bit)

 A splash screen will appear, select Open Existing Project:

 Now browse to the directory:
C:\altera_trn\SoCKIT_Materials_14.1\SoCKit\SoCKit_HW_lab_14.1 and select
soc_system.qpf and then select Open.

Set up the Quartus II project

SoCKit HW Lab Instructions, Version 14.1 27

If you close the splash screen without opening the project:

 Select File -> Open Project and browse to the directory:
C:\altera_trn\SoCKIT_Materials_14.1\SoCKit\SoCKit_HW_lab_14.1.

 Select soc_system.qpf.

 The Quartus II project will open. The project already contains a top level Verilog file

(..\top\ghrd_top.v) and a Qsys project (soc_system.qsys) that will be modified in the following
modules.

 Please take a look at the top level file. To do this, double click on the ghrd_top icon in the Project

navigator Window or (select: File -> Open and browse to the ..\top directory and open ghrd_top.v)

 The ghrd_top.v contains all of the I/O for the HPS instance as well as all the FPGA I/O. In addition,

you will find the instance for the Qsys component, soc_system at the end of the file.

CONGRATULATIONS!!

Your Quartus II project is set up. You are ready to start building your Qsys system.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 28

MODULE 4. Build the Qsys System

Module Objective

In this module you add the standard and custom components to the system, make connections where required,

assign the clocks, set arbitration priorities and generate the system.

4.1 Launch Qsys

 From the Tools menu, select " Qsys". There may be a slight delay while the Qsys application
launches.

 Open the File named soc_system.qsys

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 29

There will be various components that are already included in the Qsys system, while others will need to be built.

4.2 Build the Qsys System

The first component that you will verify and change is the HPS (Hard Processor System).

Verify the Hard Processor System

The Hard Processor System (HPS) consists of the dual ARM Cortex A9 with various peripherals enabled. The following is a

block diagram of some of the entities available in the HPS.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 30

Configure the HPS

 In the Qsys window, double-click on the hps_0 component

Figure 4.2.1

 We will now configure the HPS with the correct pin multiplexing for the peripherals to accommodate the
interfaces on the SoCKit. This process will also include configuring the clocks, the Multiport Memory
Controller, the three high speed ports: HPS to the FPGA, FPGA to HPS and FPGA to Multiport Memory
Controller and various other settings. For complete details please refer to the Cyclone V Device Handbook,
Volume 3: Hard Processor System Technical Reference Manual

Please note that there are multiple tabs for: FPGA Interfaces, Peripheral Pin Multiplexing, HPS Clocks and under the SDRAM

tab there are sub-tabs that are used to configure the HPS.

Figure 4.2.2

http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 31

4.2.1 Configure the FPGA Interfaces for the HPS

Under the FPGA Interfaces tab, there are various options in the General, AXI Bridges, FPGA to HPS SDRAM, Resets, DMA

Peripheral Request, and Interrupts sections.

Verify that the MPU standby and event signals are disabled except for the System Trace Macrocell (as shown in Fig. 4.2.2).

Refer to the Explanation of options below. These signals are utilized to indicate if the microprocessor is in standby mode to

the FPGA and can wake up an MPCore processor from a wait for event (WFE) state.

Verify that Enable MPU general purpose signals are disabled (as shown in Fig. 4.2.2). This is used to enable a pair of 32-bit

unidirectional general purpose interfaces between the FPGA and the FPGA Manager in the HPS.

 The FPGA Manager offers the following: "Used to configure the FPGA, Mimics passive parallel 32-bit
configuration, Partial Reconfiguration, Compressed FPGA configuration images, AES encrypted configuration
images, Monitors the configuration-related signals, provides 32 general purpose inputs and 32 general-
purpose outputs to the FPGA".

Ensure that the "Enable Debug APB interface", "Enable FPGA Cross Trigger Interface", and "Enable FPGA Trace Port
Interface Unit" are all disabled (as shown in Fig. 4.2.1.1).

Ensure that the "Enable System Trace Macrocell Hardware events" is enabled (as shown in Fig. 4.2.1.1).

Explanation of options:

 Debug APB interface - Enables debug interface to the FPGA, allowing access to debug components in the
HPS.

 Enable System Trace Macrocell hardware events - Enables System Trace Macrocell (STM) hardware events,
allowing logic inside the FPGA to insert messages into the trace stream.

 Enable FPGA Cross Trigger interface - Enables the cross trigger interface (CTI), which allows trigger sources
and sinks to interface with the embedded cross trigger (ECT).

 Enable FPGA Trace Port Interface Unit - Enables an interface between the trace port interface unit (TPIU)
and logic in the FPGA. The TPIU is a bridge between on-chip trace sources and a trace port.

Ensure that the "Enable boot from fpga signals" is disabled (as shown in Fig. 4.2.1.1).

Explanation of options:

 Enable boot from FPGA ready - Enables an input to the HPS indicating whether a preloader is available in on-
chip RAM. If the input is asserted, a preloader image is ready at memory location 0.

 Enable boot from FPGA on failure - Enables an input to the HPS indicating whether a fallback preloader is
available in on-chip RAM. If the input is asserted, a fallback preloader image is ready at memory location 0.
The fallback preloader is to be used only if the HPS boot ROM does not find a valid preloader image in the
selected flash memory device.

 Enable HGPL Interface - This will instantiate 14 general purpose DDR inputs. If you check these signals will be
available in the HPS IO conduit in Qsys and are at same IO voltage as the DDR interface. Please refer to the
Pin Connection Guidelines.

http://www.altera.com/literature/lit-cyclone-v.jsp

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 32

Ensure that the "Enable HGPL Interface" is disabled (as shown in Fig. 4.2.1.1).

In the AXI Bridge section, ensure both the "FPGA-to-HPS interface width" is set to 64-bit and "HPS-to-FPGA interface

width" is set to 64-bit (as shown in Fig. 4.2.1.1). Both of these interfaces can be set to 32, 64, 128-bits or Unused.

 Enabling the FPGA to HPS interface allows masters within the FPGA to access to HPS peripherals.
 Enabling the HPS to FPGA interfaces allows HPS masters to access the FPGA peripherals.

Verify that the "enable the Lightweight HPS-to -FPGA interface width" is to be set to 32 bit. A 32 bit AXI interface

optimized for low latency is thus enabled (as shown in Fig. 4.2.1.1).

After making these changes, the HPS should now look like this:

Figure 4.2.1.1

Scrolling down the FPGA interface tab, there are more options. There are sections for the FPGA-to-HPS SDRAM Interface,

Resets and DMA Peripheral Request.

Verify the FPGA to HPS SDRAM Interface section has one entry: f2h_sdram0.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 33

Figure 4.2.1.2

 This enables the FPGA to gain access to the HPS SDRAM subsystem from the FPGA fabric. This particular FPGA
to HPS interface provides up to six ports to the HPS’s multiport SDRAM controller. The bus interface provided
to the FPGA can be AXI-3 or Avalon Memory Mapped.

Ensure that the “Enable FPGA-to-HPS debug reset request” and “Enable FPGA-to-HPS warm reset request” and “Enable
FPGA-to-HPS cold reset request” are set to enabled (as shown in Fig. 4.2.1.3). There are several options and the Reset
Manager is very sophisticated. Therefore, please refer to the Cyclone V Device Handbook Volume 3: Hard Processor System
Reference Manual: Section I, Chapter 3 for details on the Reset Manager.

Explanation of reset options; Do NOT implement these changes:

 Enable HPS-to-FPGA cold reset output - Enable interface for HPS-to-FPGA cold reset output

 Enable HPS warm reset handshake signals - Enable an additional pair of reset handshake signals allowing
soft logic to notify the HPS when it is safe to initiate a warm reset in the FPGA fabric.

 Enable FPGA-to-HPS debug reset request - Enable interface for FPGA-to-HPS debug reset request

 Enable FPGA-to-HPS warm reset request - Enable interface for FPGA-to-HPS warm reset request

 Enable FPGA-to-HPS cold reset request - Enable interface for FPGA-to-HPS cold reset request

Verify the DMA peripheral request is set to the default of No for each of the eight channels (as shown in Fig. 4.2.1.3). The
designer can enable each direct memory access (DMA) controller peripheral request ID individually. Each request ID enables
an interface for FPGA soft logic to request one of eight logical DMA channels to the FPGA.

Ensure that the "Enable FPGA-to-HPS interrupts" is enabled (as shown in Fig. 4.2.1.3). This enables interrupt signals from the

FPGA to the MPU in the HPS.

http://www.altera.com/literature/hb/cyclone-v/cv_54003.pdf

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 34

Figure 4.2.1.3

The "HPS to FPGA" interrupts should all be disabled (as shown in Figure 4.2.14). An interrupt signal can be provided to the

FPGA for each one of the peripherals that are included in this section.

After making these changes, the HPS should now look like this:

Figure 4.2.1.4

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 35

4.2.2 Configure HPS' Peripheral Pin Multiplexing (MAC, NAND, QSPI, SDIO, USB)

Under the Peripheral Pin Multiplexing tab, there are options to enable the HPS peripherals. The peripherals in the HPS are

available to as many as three sets of HPS I/O pins. An HPS pin multiplexing table is available at the bottom of this tab to make

it a simpler and more intuitive task for the designer. Also, please note that all HPS peripherals are available for pin out via the

FPGAs pins.

If you put your cursor over a particular peripherals mode icon: a list of the signal to pin for a particular I/O set per pin is

displayed in a pop-up box.

Figure 4.2.2.1

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 36

To see a pin multiplexing error, change the EMAC0 pin multiplexing which is default set to Unused to be HPS I/O Set 0.

Change the default setting in this archive from

Figure 4.2.2.2

to be

Figure 4.2.2.3

There will be errors in the Messages Window:

Figure 4.2.2.4

These errors occur since each peripheral available on the HPS go to at least one set of HPS I/O. The multiplexing for each I/O

Set is controlled by selecting the specific HPS peripheral's I/O Set. When the EMAC pin multiplexing was selected, the pins for

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 37

several of the other peripherals had already used these I/O pins, and therefore a conflict. (Starting in version 13.1, an HPS pin

multiplexing table is available at the bottom of the “Peripheral Pin Multiplexing” tab to make this a simpler and more intuitive

task for the designer.) Please note that all pins that aren't utilized by an HPS peripheral can be Enabled as a GPIO pin for use

as a General Purpose I/O Pin.

Conflicts (column and row are in Red/Burgundy) :

Figure 4.2.2.5

No Conflicts: (For the peripheral selected mux_select column is green):

Figure 4.2.2.5

Change the EMAC0 pin multiplexing back to Unused to remove the errors.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 38

As the selected pins need to match the Cyclone V SoC board layout and they need to avoid errors, verify that the Qsys

settings match the following screenshots to enable the Ethernet MAC, QSPI Flash Controller, SDMMC, USB Controller, SPI

Controllers, Uart Controllers, and I2C Controllers.

Figure 4.2.2.6

Figure 4.2.2.7

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 39

Figure 4.2.2.8

There should be no errors and the conflict setting should look as follows:

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 40

Figure 4.2.2.9

4.2.3 Configure HPS Clocks

Select the HPS Clocks tab. Under the Input Clocks sub tab; there are selections to set the External Clock pins provided to the

HPS: EOSC1 & EOSC2, the ability to enable clocks between the HPS to FPGA and FPGA to HPS. New in version 14.0 is an Output

Clock tab.

4.2.3.1 Configuring HPS Input Clocks

The "ESOC1 clock frequency and ESOC2 clock frequency" External Clock Sources should all be set to 25.0 Mhz and 25.0 Mhz

(as shown in Figure 4.2.3.1). Setting EOSC1 & EOSC2 is new in version 14.0.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 41

The bullets below are descriptive. Do NOT implement these changes.

Explanation of user clock options for the Output tab:

 External Clock Sources: EOSC1 and EOSC2 are based upon the frequency at the HPS I/O pins: HPS_CLK1 and
HPS_CLK2, D25 and F25 for the 5CSXFC6D6F31C6

 Enable HPS-to-FPGA user 0, 1, 2 clock - Enable main PLL from HPS to FPGA
 User 0, 1, 2 clock frequency - Specify the maximum expected frequency for the main PLL

 Enable FPGA-to-HPS peripheral PLL reference clock - Enables the interface for FPGA fabric to supply
reference clock to HPS peripheral PLL

 Enable FPGA-to-HPS SDRAM PLL reference clock - Enables the interface for FPGA fabric to supply reference
clock to HPS SDRAM PLL

Figure 4.2.3.1

The PLL reference clocks between the HPS and FPGA are NOT enabled for this lab. Therefore,
your screenshot should be as shown below:

Figure 4.2.3.2

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 42

 None of the HPS Peripherals were selected to be available in the FPGA; therefore, none of these

 clocks are Peripheral FPGA Clocks:

Figure 4.2.3.3

 For example, if SPM1 were selected to be available in the FPGA under the Peripheral Pins tab,

Figure 4.2.3.4

 Then, the result in the HPS Clocks tab would be:

Figure 4.2.3.5

If you made the change to SPM1 pin multiplexing change it back to UNUSED now!

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 43

4.2.3.2 Configuring HPS Output Clocks (Output Clocks is NEW in Version 14.0)

4.2.3.2.1 HPS Output Clocks: Clock Sources

Please leave the settings to the default:

Figure 4.2.3.6

The bullets below are descriptive. Do NOT implement these changes.

Explanation of user clock options for the Output tab:

 Peripheral PLL reference clock source: This selects the reference clock for the HPS peripherals and can be set
to the: EOSC1 Clock, EOSC2 Clock, FPGA-to-HPS peripheral reference clock. EOSC1 & EOSC2 are based upon
the frequency at the HPS I/O pins: HPS_CLK1 and HPS_CLK2, D25 and F25 for the Cyclone V SX
5CSXFC6D6F31C6. The FPGA-to-HPS peripheral reference clock is set under the Input tab. Please refer to
Figure 4.2.3.7

 SDMMC clock source – Sets the clock source for the Secure Digital/Multimedia Card controller
 FPGA-to-HPS peripheral reference clock – f2h_periph_ref_clk as defined in the input Clock tab
 Main NAND SDMMC Clock – Selects the PLL output from the “Main Clock Group” MPU, L3 & L4 & Debug PLL
 C4 from the HPS Clock Manager
 Peripheral NAND SDMMC Clock – Selects the PLL output from the “Peripheral Clock Group” Peripheral PLL
 C3 from the HPS Clock Manager
 Please refer to Figure 4.2.3.8

 NAND clock source – Sets the clock source for the NAND Flash controller
FPGA-to-HPS peripheral reference clock – f2h_periph_ref_clk as defined in the input Clock tab
Main NAND SDMMC Clock – Selects the PLL output from the “Main Clock Group” MPU, L3 & L4 & Debug PLL
C4 from the HPS Clock Manager
Peripheral NAND SDMMC Clock – Selects the PLL output from the “Peripheral Clock Group” Peripheral PLL C3
from the HPS Clock Manager
Please refer to Figure 4.2.3.9

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 44

 QSPI clock source – Sets the clock source for the QSPI controller
FPGA-to-HPS peripheral reference clock – f2h_periph_ref_clk as defined in the input Clock tab
Main QSPI Clock – Selects the PLL output from the “Main Clock Group” MPU, L3 & L4 & Debug PLL C3 from
the HPS Clock Manager
Peripheral QSPI Clock – Selects the PLL output from the “Peripheral Clock Group” Peripheral PLL C2 from the
HPS Clock Manager
Please refer to Figure 4.2.3.10

 L4MP clock source – L4 Master Peripheral Clock: l4_mp_clk
Main Clock – Selects the PLL output from the “Main Clock Group” main_base_clk or C1 from the Main PLL
Peripheral base clock – Selects the PLL output from the “Peripheral Clock Group” from the Peripheral PLL C4

 L4SP clock source – L4 Slave Peripheral Clock: l4_sp_clk
Main clock - Selects the PLL output from the “Main Clock Group” main_base_clk or C1 from the Main PLL
Peripheral base clock – Selects the PLL output from the “Peripheral Clock Group” from the Peripheral PLL C4

Figure 4.2.3.7

Figure 4.2.3.8

Figure 4.2.3.9

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 45

Figure 4.2.3.10

4.2.3.2.2 HPS Output Clocks: Main PLL Output Clocks – Desired Frequencies

 The "ESOC1 clock frequency and ESOC2 clock frequency" External Clock Sources drive the HPS Clock manager PLLs (Main

Clock Group, Peripheral Clock Group, SDRAM Clock Group & OSC1 Clock Group PLLs).

Please leave the settings (except uncheck Use default MPU clock frequency):

Figure 4.2.3.11

The bullets below are descriptive. Do NOT implement these changes.

 MPU clock frequency – Sets the clock frequency for the processor

 must be unchecked to configure with own frequency

 L3MP clock frequency – L3 Master Peripheral clock frequency: l3_mp_clk
Divides by 1 or 2 the PLL output from the main_base_clk or C1 from the Main PLL

 L3SP clock source – L3 Slave Peripheral Clock: l3_sp_clk

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 46

Can be divided by 1 or 2 the L3PM clock (l3_mp_clk)

 Debug AT clock frequency – Debug AT Clock: dgb_at_clk
Derived from the Main PLL: C2 output and can be divided by 1 or 2

 Debug Timer clock frequency – Debug Timer Clock: dgb_timer_clk
Derived from the Main PLL: C2 output

 Debug clock frequency – Debug Clock: dgb_clk
Originates from dbg_at_clk divided by 2 or 4, derived from the Main PLL: C2 output

 Debug trace clock frequency – Debug trace clock: dgb_trace_clk
Originates from dbg_base_clk divided by 1, 2, 4, 8 or 16, derived from the Main PLL: C2 output

 L4 MP clock frequency – L4 Main Peripheral clock: l4_mp_clk
Originates from dbg_base_clk or periph_base_clk divided by 1, 2, 4, 8 or 16

 L4 SP clock frequency – L4 Slave Peripheral clock: l4_sp_clk
Originates from dbg_base_clk or periph_base_clk divided by 1, 2, 4, 8 or 16

 Configuration HPS-to-FPGA user 0 clock frequency – h2f_user0_clock
Originates from cfg_h2f_user0_base_clk which is the Main PLL: C5 output

Figure 4.2.3.12

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 47

4.2.3.2.3 HPS Output Clocks: Peripheral Output Clocks – Desired Frequencies

 Please leave the settings (except uncheck Use default MPU clock frequency):

Figure 4.2.3.13

 SDMMC clock frequency – Originates from the Peripheral PLL: C3 output: periph_nand_sdmmc_base_clk

 NAND clock frequency – Originates from the Peripheral PLL: C3 output: periph_nand_sdmmc_base_clk
 QSPI clock frequency – Originates from the Peripheral PLL: C3 output: periph_qspi_base_clk

 EMAC0 clock frequency – emac0_base_clk
Originates from the Peripheral PLL, C0 output: emac1_base_clk

 EMAC 1clock frequency – emac1_base_clk
Originates from the Peripheral PLL, C1 output: emac1_base_clk

 USB clock frequency – usb_mp_clk
Originates from the Peripheral PLL, C4 output: periph_base_clk
Can be divided by 1,2,4,6, or 16

 SPI clock frequency – spi_m_clk
Originates from the Peripheral PLL, C4 output: periph_base_clk
Can be divided by 1,2,4,6, or 16

 CAN0 clock frequency – can0_clk
Originates from the Peripheral PLL, C4 output: periph_base_clk
Can be divided by 1,2,4,6, or 16

 CAN1 clock frequency – can1_clk
Originates from the Peripheral PLL, C4 output: periph_base_clk
Can be divided by 1,2,4,6, or 16

 GPIO clock frequency – Originates from the Peripheral PLL, C4 output: periph_base_clk
Divided by 24

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 48

Figure 4.2.3.14

4.2.3.2.4 HPS Output Clocks: HPS-to-FPGA user clocks

 Please leave the default settings:

Figure 4.2.3.15

 Enable HPS-to-FPGA user 0 clock – h2f_user0_clock
Originates from cfg_h2f_user0_base_clk which is the Main PLL: C5 output

 Refer to Figure 4.2.3.12

 Enable HPS-to-FPGA user 1 clock
Originates from h2f_user1_base_clk which is the Peripheral PLL: C5 output
Refer to Figure 4.2.3.14

 Enable HPS-to-FPGA user 2 clock
Originates from h2f_user0_base_clk which is the SDRAM PLL: C5 output
Refer to Figure 4.2.4.2

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 49

4.2.4 Configure SDRAM (The HPS External Memory Interface)

Please note that Altera has an 8 Hour class available for Implementing, Simulating, and Debugging External Memory Interfaces

and this resource should be utilized for an in depth understanding of EMIFs.

Under the SDRAM tab, there are options to set the SDRAM parameters for the HPS External Memory Interface. The SoCKit has

two Micron 1.35V DDR3L SDRAM devices connected to the HPS (256Mb x 16 x 2 = 1GB at 1.5V vs. 1.35v).

There are four tabs for the SDRAM configuration: PHY Settings, Memory Parameters, Memory Timing, and Board Settings.

Select the PHY Settings tab, the clock and Advanced PHY Settings are required.

Change the memory clock frequency from 300 MHz to 400 MHz (as shown in Figure 4.2.4.1). This is the rate for the Micron

memory devices.

Verify that the supply voltage is set to be 1.5V V DDR3. The 1.35 V variation of this Micron device is used; but the Vdd/Vddq

are connected to 1.5v in order to reduce the system power supply complexity for SoCKit.

The settings should now look like:

Figure 4.2.4.1

http://www.altera.com/education/training/courses/IMEM210

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 50

Figure 4.2.4.2

Select the Memory Parameters tab (as shown in Figure 4.2.4.2). The settings are needed to match the DDR3 device. A table

from the Micron datasheet shows the row address, bank address and column address. The Micron memory used on this

board has the parameters in the last column (256 Meg x 16).

Figure 4.2.4.2

The datasheet also shows that the DM and DQS# pins are enabled.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 51

Verify the parameters that are selected as shown below:

Figure 4.2.4.3

The Memory Initialization Options are at the bottom of this page, where the values are again taken from the Micron

datasheet.

Figure 4.2.4.4

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 52

Under the Memory Timing tab, timing parameters need to be verified:

Figure 4.2.4.5

The memory timings listed above match those in the datasheet.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 53

Under the Board Settings tab:

Verify that the "Setup and Hold Derating" is set to Use Altera's default settings.

Verify that the Intersymbol interference should be left as default to Use Altera's default settings.

Figure 4.2.4.6

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 54

Since the board design is complete, the board skews, which are linked to timing differences between traces are known. These

settings should be set to:

Figure 4.2.4.7

At the top of the Arria V/Cyclone V Hard Processor System Parameters Window, close the window by selecting the X, as the

settings for the Hard Processor System are now configured.

Figure 4.2.4.8

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 55

In the export column associated with the HPS_0, there are five signals that need to be exported to the top level of the project.

This is the reason why there are five signals already associated as shown in Figure 4.2.4.9 below.

Figure 4.2.4.9
Add and configure FPGA Peripherals

The next step is to add and configure the FPGA peripherals in Qsys.

4.2.5 Configure LED PIO

The SoCKit board has four LEDs connected to the FPGAs I/O pins. These LEDs are driven with an output PIO component.

To add this component

 Type PIO in the Search Window

 Double click on the PIO (Parallel I/O) to add to your system:

Figure 4.2.5.1

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 56

 Set the Width to be 4, which is the number of LEDS on the board connected to the FPGA I/O pins.

 Insure that the direction is set to Output.

 Select Finish (as shown in Figure 4.2.5.2)

Figure 4.2.5.2

Change the default name of the PIO component to be led_pio.

 To change the name, select the component (High Light), right click and select Rename.

Since the LEDs connections will be driven by the FPGAs I/O, the LED signals will need to be exported to the top level of the

project. To do so:

 Double click in the export column associated with the external connection of the led_pio and the following
should automatically show up: led_pio_external_connection. If not, then type: led_pio_external_connection

The component should now look like:

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 57

Figure 4.2.5.3

4.2.6 Configure Button PIO

The SoCKit has four push buttons that are connected to the FPGA. The PIO peripheral will be configured as an Input and will

be used to read in the push buttons connected to the FPGAs I/O.

To add the 4 input component:

 type PIO in the Search Window

 double click on the PIO (Parallel I/O) to add to your system:

 Figure 4.2.6.1

 Set the width to be 4. Ensure that the direction is set to Input.

 Set the Edge capture register to Synchronously capture on the FALLING edge.

 Enable Generate IRQ. Set the IRQ Type to Edge.

 Refer to Figure 4.2.6.2 before proceeding to check your settings

 Select Finish

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 58

Figure 4.2.6.2

Change the default name of the PIO component to be button_pio. To change the name, select the component

(high light), right click and select Rename.

Since the Button PIO connections will be inputs to the FPGAs I/O, the Button signals will need to be exported to the

top level of the project.

 To do so, double click within the export column associated with the external connection of this component.

 The following should automatically show up: button_pio_external_connection. If not, then type:
button_pio_external_connection

The settings for the component should now look like:

Figure 4.2.6.2

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 59

Save the Qsys system, select: File -> Save.

Review other Qsys components

There are many other components in the Qsys system that have already been configured. These components have already

been configured for the SoCKit embedded system. Therefore, these components do not need to be configured.

A summary of these components:

The FPGAs array provides on chip memory blocks that can be used to build up internal RAM (or ROM) blocks of memory that

is available for any Master in the Qsys system. This provides the HPS Cortex-A9 MPU access to very low-latency, high speed

memory for code or variable storage. This is the onchip_memory2_0 component.

The JTAG to Avalon Master accepts encoded streams of bytes of transaction data on the JTAG interface and initiates Avalon-

MM (multi-master) transactions on the Avalon-MM interface. The JTAG to Avalon Master is also used for debugging, with

tools such as System Console and SignalTap. Both System Console and SignalTap will be used later in this workshop.

The System ID peripheral is a very important peripheral to include in your system. It allows the software development tools

to validate that the software application is being built for the correct hardware system. Basically, it will not allow software to

be executed on an incompatible hardware configuration.

The SoCKit has four DIP switches on it that are connected to the FPGAs I/O pins. The dipsw_pio is an input PIO peripheral

that is used to read in the DIP Switch settings in a fashion similar to the button_pio peripheral.

Software developers need to have access to a debug serial port from the target to leverage printf debugging, input control

commands, log status information, etc. The jtag_uart peripheral connects to the debugger console and provides an interface

to the developers console for that and other purposes.

Interrupts are signals that need immediate attention. Interrupts have higher priority than other processes. The

interrupt_capturer component is an Avalon Memory Mapped module (written in Verilog) to capture system interrupts and

pass them on to the HPS Cortex-A9 MPU.

4.3 System Configuration

4.3.1 Connect HPS interfaces to FPGA Peripherals

The Qsys components that were just created (led_pio and button_pio) have not been connected; therefore, there are errors.

These errors will be removed in the next steps.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 60

Figure 4.3.1.1

The following steps will connect the components to the system; these include the Avalon Memory Mapped signals as well as

the clock and reset signals. There are two methods that can be utilized to connect your new system components. Visually by

using the patch panel to connect the nodes or busses (dots) or by right clicking on the menu (as described below).

To connect the led_pio to the system via the menu method: right click on the clk signal of the led_pio. The available

connections are connected as shown:

Figure 4.3.1.2

 Select clk_0.clk

The clock of the PIO is now connected to the 100 MHz clock from the FPGAs dedicated clock input pin AF14.

The following connections will be made with the same process of right clicking on the signal and then selecting the signal to

be connected. The following table describes what signals are to be connected together

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 61

Name of Component Name of Signal What component that

the signal is to be

connected to

What signal of the

component that is to be

connected to

led_pio Clk clk_0 clk

led_pio reset clk_0 clk_reset

led_pio s1 fpga_only_master master

led_pio s1 mm_bridge_0 m0

button_pio clk clk_0 clk

button_pio reset clk_0 clk_reset

button_pio s1 fpga_only_master master

button_pio s1 mm_bridge_0 m0

Table 4.3.1.1

As the connections are made, the errors at the bottom of the Qsys window will be removed. Since the IRQs have yet to be set

there will still be errors and they will be removed in the next section.

4.3.2 Set IRQs

Components with interrupts can be set to have higher priority than other system components; therefore, the components

with interrupts our Qsys system need to be assigned.

The DIP switch, button and JTAG all have interrupts that will be captured by the interrupt capture module. These interrupts

will be connected to the HPS component. The dipsw_pio and jtag_uart components already have the interrupts assigned to

them.

The pio_button component also needs to have an IRQ assigned to it.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 62

To assign IRQ, first the push button needs to connected to the IRQs and then the interrupts level needs to be assigned.

 Right click on the irq of the button_pio so that the button_pio irq can be selected, as seen in the following
screenshot.

Figure 4.3.2.1

 Select the hps0.f2h_irq0 so that this interrupt is selected.

 Repeat this step again, but now select the intr_capturer_0.interrupt_receiver.

The interrupts should now look like:

Figure 4.3.2.2

Next, verify the interrupt level for the push button.

 Select the IRQ column (second to last column in the Qsys), where the level of the IRQ that will be assigned.

 Click in the box and type in the number 1.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 63

Figure 4.3.2.3

Errors still remain at the bottom of the Qsys screen and these will be removed in the following steps.

4.3.3 Set Base Addresses

The system has a memory map. A systems memory map consists of addresses that are assigned to a component and these

address ranges cannot overlap. The addresses can be assigned automatically or manually. For this workshop, the addresses

are assigned manually since the software portion of this workshop will use these addresses.

To assign base addresses:

 Select the Address Map tab in Qsys. This is a table that includes all of the memory -mapped slaves in the
design and the address range that each connected memory-mapped master uses to address that slave. The
blank cells, which are by default, implies that there is no connection between that master and slave.

The "Address Map" tab is seen as:

Figure 4.3.3.1

Now all of the errors in your Qsys system should be eliminated!

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 64

 Once these values are entered, go back to the System Contents tab and go the led_pio and select the row associated with the

base addresses, as shown below.

In the Base address column, select the lock icon by the Base Address, so that the Base Address is locked, as seen below.

Locking an address prevents a base address from being changed.

Figure 4.3.3.4

Repeat the same step for button_pio so that its address range is also locked.

4.3.4 Set AXI Bridge to Secure

The system has three JTAG to Avalon Master bridges and in Module 5 we want to allow system console the ability to Write to

the HPS memory space from the FPGA. Specifically, to the HPS GPIO’s (GPIO53, GPIO54, GPIO55 & GPIO56) associated with

the LEDs on pins: A24, G21, C24 and E23. I order for the system to allow this capability, the hps_only_master.master port

must be set to secure.

In Qsys select and right mouse click on “Connections”, a drop down dialog box will appear as shown in Figure 4.3.4.1

Check “Show Security Column”.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 65

Figure 4.3.4.1

The “Security” Column will now be available in Qsys:

Figure 4.3.4.2

Select the master under “hps_only_master” and click on “Non-secure” and change to “Secure”:

Figure 4.3.4.3

Figure 4.3.4.4

 Save the Qsys system, with File -> Save.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 66

4.3.5 Block Diagram of the Golden Hardware Reference Design

The Golden Hardware Reference Design is an important part of the GSRD and consists of the following components:

 ARM Cortex™-A9 MPCore HPS

 Four user push-button inputs

 Four user DIP switch inputs

 Four user I/O for LED outputs

 64KB of on-chip memory

 JTAG to Avalon master bridges

 Interrupt capturer for use with System Console

 System ID

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 67

Figure 4.3.5.1

4.3.5.1 MPU Address Map

This section presents the address maps as seen from the MPU (A9) side.

HPS-to-FPGA Address Map

 The memory map of soft IP peripherals, as viewed by the microprocessor unit (MPU), starts at HPS-to-FPGAaddress offset 0xC000_0000.

 The following table lists the offset of each peripheral in the FPGA portion of the SoC.

Table 4.3.5.1

Lightweight HPS-to-FPGA Address Map

 The memory map of system peripherals in the FPGA portion of the SoC as viewed by the MPU, which starts at the lightweight HPS-to-FPGA

 base address 0xFF20_0000, is listed in the following table.

Peripheral Address Offset Size (bytes) Attribute

sysid_qsys 0x1_0000 8 Unique System ID

led_pio 0x1_0040 8 LED output display

dipsw_pio 0x1_0080 8 DIP Switch Input

button_pio 0x1_00c0 8 Push button Input

jtag_uart 0x2_0000 8 JTAG UART console
Table 4.3.5.2

4.3.5.2 JTAG Master Address Map

There are two JTAG master interfaces in the design, one for accessing non-secure peripherals in the FPGA fabric, and another for accessing secure

peripheral in the HPS through the FPGA-to-HPS Interface. The following table lists the address of each peripheral in the FPGA portion of the SoC, as

seen through the non-secure JTAG master interface.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 68

Table 4.3.5.3

4.3.5.3 Interrupt Routing

The HPS exposes 64 interrupt inputs for the FPGA logic. The following table lists the interrupts from soft IP peripherals to the HPS interrupt input

interface.

Table 4.3.5.4

The interrupt sources are also connected to an interrupt capturer module in the system, which enables System Console to be aware of the interrupt

status of each peripheral in the FPGA portion of the SoC.

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 69

4.4 Generate the System

Please Double-check to make sure that all the component names, clocks and base addresses in your Qsys system match the
names below.

First half of the Qsys Window

Figure 4.4.1

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 70

Second half of the Qsys window

Figure 4.4.2

Select the "Generate" from the menu and then select Generate HDL… from the drop down menu.
Next select the Generate button.
If it asks you to save, select Yes.

Figure 4.4.3

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 71

You will receive the following warnings, but they can be disregarded:

Figure 4.4.4

Exit Qsys by clicking: File then Exit and click Save when it asks if you would like to save the system.

Next, select: OK when the message about adding the qip and sip files to the Quartus II project is displayed.
This will be taken care of in MODULE 5: Complete the Quartus II Project

Figure 4.4.5

A simulation model for the System wasn’t created; therefore, you will not find the */simulation/soc_system.sip file.

Qsys will generate the HDL files (Verilog or VHDL) for the defined system. These HDL files are then used by Quartus II to
compile and generate a set of files that defines the hardware system. This set of files includes the HDL files, Tcl (Tool
Command Language) files that define dedicated pin locations for selected HPS peripherals, Tcl files that define the
Multiport Memory Controller in the HPS & FPGA, QIP files that include: selected IP and SDC (Synopsis Design Constraint
files) utilized by TimeQuest to constrain the complete system design, SIP files that include: the Simulation IP files
required to complete a simulation. Both the QIP and SIP files use Tcl syntax.

http://www.google.com/url?sa=t&rct=j&q=quartus%20qip%20file&source=web&cd=1&cad=rja&sqi=2&ved=0CC0QFjAA&url=http%3A%2F%2Fquartushelp.altera.com%2Fcurrent%2FmergedProjects%2Freference%2Fglossary%2Fdef_qip_file.htm&ei=YWKEUZyeLcXi0gGDyYDICQ&usg=AFQjCNGdctGwD
http://www.alterawiki.com/wiki/Timequest?GSA_pos=1&WT.oss_r=1&WT.oss=TimeQuest

Build the Qsys System

SoCKit HW Lab Instructions, Version 14.1 72

In Quartus II you can find these files here by selecting File -> Open, then go to the soc_system/synthesis directory
(select: All Files(*.*)) for all of the files to be displayed:

Figure 4.4.5

CONGRATULATIONS!!

You have just built your first Qsys system!

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 73

MODULE 5. Complete the Quartus II Project

Module Objective:

In this module you complete the Quartus II project by adding the generated Qsys system to the top level entity. Use Quartus

II tool to perform analysis, synthesis, fitting, place and route as well as the static timing analysis. At the end of the compilation,

an SRAM object file (*.SOF) will be generated for the FPGA. This SOF will then be downloaded to the Cyclone V SoC device via

the USB Blaster and the Quartus II programmer.

5.1 Set up the Quartus II project to point to the correct files

When the generate button in Qsys in the previous step was selected, Qsys generated numerous HDL (Verilog) files that will be

utilized by the synthesis tool in Quartus II (QIS). These files need to be added to the Quartus II project so that they can be

compiled in the next step. However, rather than adding all of the files separately, there is a single file, soc_system.qip, that

will contains the paths for all of the IP cores.

 To add this file in Quartus II, select: Assignments -> Settings -> Files and select using the "..." Browse button

Figure 5.1.1

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 74

 Next, select the system_soc.qip file (select All Files (*.*) drop down dialog to see the file)

Figure 5.1.2

 Then, select "Open"

 Add the file to the project by selecting the "Add" button

 Select Apply.

Figure 5.1.3

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 75

 Using the same window and use the same process in the two previous steps to add the
soc_system_timing.sdc

Figure 5.1.4

 Using the same window and use the same process in the two previous steps to add the
/ip/edge_detect/altera_edge_detector.v
/ip/altsource_probe/hps_reset.v
/ip/altsource_probe/hps_reset.qip
/ip/debounce/debounce.v

 The window should look like:

Figure 5.1.5

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 76

 Select Apply, Select OK

 The next step is to add the synthesis directories to the project. Quartus II uses these files in these directories
to compile the design.

 To do this, select Assignments -> Settings -> Libraries and select in the Project Library section, with the ...
(Browse) button, the three HPS libraries.

 soc_system/synthesis/
 soc_system/synthesis/submodules/
 soc_system/synthesis/submodules/sequencer/

 Select Add after adding each library.

The end result should look like:

Figure 5.1.6

 Select Apply

 Select OK to finish.

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 77

5.2 Analysis and Synthesis

Before the pin-outs can be added to Quartus II an Analysis and Synthesis needs to be completed. Analysis and Synthesis is the

stage that analyzes and synthesizes design files and creates a net-list within a project database. These nets can then be

assigned to actual device pins.

 Select the icon with the checkmark (purple arrow with blue checkmark) at the top of the Quartus II window,
as seen below.

Figure 5.2.1

 Analysis and Synthesis will now run. Once it is complete, select OK.

 There should be no errors.

 If there are errors, there will be error messages at the bottom of the page that will describe the errors. These
errors will need to be resolved before continuing.

5.3 Adding Pin assignments

Since an HPS was instantiated in the Qsys system, pin assignments other than memory pins, do not need to be specified in

Quartus II. The HPS pin assignments are automatically assigned when the HPS was instantiated and this information is

contained in the XML files, which the software development tools will utilize. However, the HPS memory pins will need to be

assigned, since there are External Memory Interface variations that can occur. This task is completed by running a Tcl script

that was created by Qsys for this purpose.

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 78

 To run the TCL script, select Tools -> TCL scripts… and select the hps_sdram_p0_pin_assignments.tcl as seen
below.

Figure 5.3.1

 Select Run.
 Select Close after the TCL script states that it has correctly added pins.

5.4 Compile (Optional step for this lab)

At this point the design is ready for compilation.

Since a full compilation can take a while, depending on the computer being used, there are precompiled files available which
will be used in Module 6.

The generated file is: soc_system.sof

To complete a full compilation, select: Processing -> Start Compilation. There should be no errors in the compile, and you
should see the successful completion dialog when it is finished. You will see some warnings related to the files from the
automatically generated system, missing assignments/features and incomplete pin assignments but these will not affect the
functionality of the system.

The output of the compilation is a SOF file entitled “soc_system.sof” which you can find in the output_files directory:

Complete the Quartus II Project

SoCKit HW Lab Instructions, Version 14.1 79

Figure 5.4.1

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 80

MODULE 6. Hardware Debug Flow (System Console)

Module Objective:

In this module you will debug the Qsys system by utilizing system console. We will execute a Tcl script in the system console

tool to write data to the LED_PIO port. The Tcl script sets up the JTAG Master port in the Qsys system and then provides

stimulus to write successive bytes of data to the LED_PIO port.

6.1 Downloading and Programming FPGA

Previously, when the USB Blaster driver was enabled, the SoCKit was plugged in, the programming dip switch was enabled

and the cables were connected, ensure that the SoCKit is still powered on, and cables are still connected.

 Within Quartus II, select Tools -> Programmer. OR Launch the Quartus II v14.1 software: Select -> All
Programs -> Altera 14.1.0.186 Web Edition -> Quartus II 14.1 Programmer

 Select (top left hand side of the Programming Window) and ensure that the currently selected

hardware is CV SoCKit [USB-1]. It should be selected by default. If not currently selected; then double click
on CV SoCKit.

Figure 6.1.1

 Select Close.

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 81

 Select "Auto Detect"

Figure 6.1.2

 Select the correct device: "5CSXFC6D6ES" and then OK

Figure 6.1.3

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 82

 If the following appears, Select Yes:

Figure 6.1.4

 The Programming window should now appear as shown in Figure 5.5.5:

Figure 6.1.5

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 83

 Select the file row for the 5CSXFC6D6ES

 Select, Change File
 If you compiled the design Select the soc_system.sof, as shown in the .\output_files directory

OR
Select the soc_system.sof, as shown in the .\ precompiled_files_for_system_console_module

Figure 6.1.5

 Select Open

 Select the checkbox in the program/configure column and a check will appear.

 The window should then now look as shown (If not, then delete the extra 5CSXFCD6ES device):

Figure 6.1.6

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 84

Press the Start Button as shown in Figure 6.1.6 to program the FPGA.

Figure 6.1.6

After programming the FPGA the progress indicator should indicate 100% complete as shown in Figure 6.1.7. There should be

no error messages.

Figure 6.1.7

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 85

Select File -> Exit to close the Programmer window.

Select the “No” button as shown in Figure 6.1.8 to complete closing the Programmer window.

Figure 6.1.8

6.2 Executing System Console Scripts

There are different ways to debug a design. Qsys was utilized to build the system and a JTAG to Avalon Master Bridge was

added to the design. As a result, debug can be completed by using System Console. System Console is a low level hardware

debug tool that is built with Tcl and runs Tcl scripts and commands.

Hardware Debug Flow (System Console)

System Console is used for low-level system debug over JTAG on any Qsys based system

 Tcl-based

 Familiar development tool language

 Interactive

 Opens as a separate window

 Opens in Qsys or in the Nios® II Command Shell

 Scriptable

 Tcl files can be “sourced”

 Supports command line arguments

 Supports standard input/output

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 86

 Examples of Use

 Low-level Debug

Board bring-up and interface testing

System clock, reset, and JTAG chain validity testing

Qsys component functionality testing

 System-level Debug

Provide test vectors, return response

No processor required

For more detailed information, please download and read the System Console User Guide

A functional test of the components instantiated in the FPGA will be realized with System Console. The software lab will also

utilize system console and the ARM DS-5 tool to cross-trigger from the DS-5 to the FPGA and FPGA to DS-5.

When creating and debugging SoC based systems, the hardware Engineer will want to validate the peripherals and any Qsys IP

that has been created on the FPGA side. This IP validation will be completed in the following steps utilizing System Console.

Basic System Console Test

This diagram shows an overview of the interface from System Console to the Qsys design that includes the PIO registers

(button_pio & led_pio). A set of Tcl commands will be executed from the System Console to read from the system registers

associated with the address of the push buttons (KEY3-KEY0) and then write to the system register associated the LEDs.

Depending upon the KEYs read, this write will then illuminate the associated LED by bit position.

http://quartushelp.altera.com/14.1/master.htm#mergedProjects/program/syscon/syscon_about.htm?GSA_pos=10&WT.oss_r=1&WT.oss=system console
http://quartushelp.altera.com/14.1/master.htm#mergedProjects/program/syscon/syscon_about.htm?GSA_pos=10&WT.oss_r=1&WT.oss=system console

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 87

Figure 6.2.1

 To run System Console in Quartus II, select: Tools -> Qsys. This will open the Qsys window.

 Select the soc_system. qsys file so that your Qsys design will open.

 In Qsys, select: Tools -> System Console.

 A new window will now appear as shown:

Figure 6.2.2

Although the Tcl commands can be executed from the Tcl Console command line, a script was created to automate
the process.

To run the script, select: File -> Execute Script. There will be a pop up window that appears that looks as follows:

 To run the script, select: File -> Execute Script.

 There will be a pop up window that appears that looks as shown in Figure 6.2.3

 Scroll to the correct path where you un-archived the lab files, and select test_one.tcl.

 Do not select Open yet.

Figure 6.2.3

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 88

 Before selecting Open, there are various push button combinations to try. The FPGA push buttons are the
buttons on the bottom right hand side of the board.

Figure 6.2.4

 Hold down push button KEY0 and then select Open.

 You should also see the following hex numbers: 0x0e 0x00.
 In the messages window, System Console test done will appear.

 Release the KEY0 button.

 LED0 will not illuminate

 Other combinations are possible when executing the test_one.tcl script:

Press KEY(s) then run test_one.tcl Result for LEDs and System Console

Hold down KEY1 and run the test_one.tcl script.

Release the buttons when the words System

Console test done in the Window show up

1101 = 0x0d

(LED1 will not illuminate)

Hold down KEY1 and KEY0 at the same time and

then run test_one.tcl..

1100 = 0x0c

(LED0 & LED1 will not illuminate)

Do not select any of the KEYs and then run

test_one.tcl.

1111 = 0x0f

(All LEDs are illuminated)

Table 6.2.1

 Close the System Console window, select: File -> Exit

Congratulations!

If the design was compiled in Quartus and the System Console scripts were not run successfully, precompiled files can

be extracted from the "precompiled_files_for_system_console_module" directory. Copy the .jdi and .sof files to the

output_directory. Copy the .sopcinfo file to the "SoCkit_HW_lab_14.1" directory. Redo sections 6.1 and 6.2

Hardware Debug Flow (System Console)

SoCKit HW Lab Instructions, Version 14.1 89

You have just run the System Console debugging window.

6.3 Experiments with the System Console Window (Optional)

 Open the test_one.tcl file with an editor and take a look at the code.

 To perform any commands in the Tcl Console you will have to type in the following commands:

 % set AvailableServices [get_service_types]
 % set jtag_master [lindex [get_service_paths master] 1]
 % open_service master $jtag_master

 master_write_8 $jtag_master 0x10040 $CurSwitch

 You can change the value of $CurSwitch to be a value of 4, for example so that it now looks for

 % master_write_8 $jtag_master 0x10040 4

 This command writes a 4 (0100) to the address of the FPGAs LEDs (0x0001_0040). Therefore, only LED2 will
be illuminated. (The KEY(s) are active low, therefore; the reason for the difference when reading from the
KEY(s) address and writing to the LED(s) address.

 When you have finished close the service with the following command:
 % close_service master $jtag_master

 When you have finished close system console:
 Select: File -> Exit

System Console is an extremely valuable troubleshooting/debug tool that allows you to create graphical user interfaces called

dashboards. These dashboards can interact with the Qsys IP on the device. Examples of dashboards that have been created

for debugging include the Transceiver Tool Kit, the External Memory Interface Toolkit and the ADC Toolkit for MAX10.

Congratulations!

You have just completed using System Console.

http://www.altera.com/products/software/quartus-ii/transceiver/swf-transceiver-toolkit.html?GSA_pos=6&WT.oss_r=1&WT.oss=transceiver%20toolkit
http://www.altera.com/education/training/courses/OMAXADC103?GSA_pos=1&WT.oss_r=1&WT.oss=ADC%20Toolkit

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 90

MODULE 7. Hardware Validation with Simulation (Do at home Exercise)

Module Objective:

In this module you will simulate the LED_PIO hardware in the FPGA you created in Qsys.

Simulation allows the design to be verified before it is programmed into the device. Quartus II allows both RTL and gate level

simulation. RTL simulation is a cycle-accurate simulation and will be covered in the Module.

The RTL simulation can consist of the entire design or sub-components of the design. In this module the RTL simulation will

only include the LED PIO (Parallel Input Output) component in the system.

PIO

R/W

LEDs

FPGA

Figure 7.1.1

The LED PIO uses Avalon signals to toggle on/off the LEDs.

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 91

7.1 Installing ModelSim-Altera (Complete 7.1 only if you didn’t install ModelSIM in Module 1)

1. ModelSim-Altera (simulator software) is needed to be installed before this Module can be completed. ModelSim-

Altera can be downloaded from the following URL:

 https://www.altera.com/download/sw/dnl-sw-index.jsp

2. Select: Select by Software under Software Selector

3. Select: ModelSIM-Altera Starter Edition

4. Select: Select Version or Product: 10.1e for Quartus II v14.1

5. Select: Download

Figure 7.1.2

https://www.altera.com/download/sw/dnl-sw-index.jsp

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 92

6. Select: Individual Files

7. Select: Download Selected Files to download ModelSIM-Altera Edition (includes Starter Edition)

Figure 7.1.3

8. Go to the download directory and run the executable: ModelSimSetup-14.1.0.186-windows.exe

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 93

9. Select NEXT as shown in the following screenshot

Figure 7.1.4

10. Select ModelSim-Altera Starter Edition, then Next

Figure 7.1.5

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 94

11. Select: I accept the agreement, then Next

Figure 7.1.6

12. Navigate to the installation directory and select Next >

Figure 7.1.7

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 95

You will only need to install ModelSim-Altera Starter, since Quartus II was installed in a previous step.

7.2 Set EDA Tool Settings in Quartus II

Open Quartus II, Select -> All Programs -> Altera 14.1.0.186 Web Edition -> Quartus II Web Edition 14.1.0.186

-> Quartus II 14.1 (64)

1. If you’re design isn’t open, then to Open your design, select: File -> Open Project and select:
C:\altera_trn\SoCKit\SoCKit_HW_lab_14.1\soc_system.qpf

2. Setup Nativelink for ModelSim-Altera in Quartus II. Select: Tools -> Options

3. Under the Category: General: select: EDA Tool Options

4. Next, select the browse button and browse to your ModelSIM Installation Directory and select the path to

win32aloem

C:\altera\14.1WE\modelsim_ase\win32aloem

Figure 7.2.1

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 96

5. Select OK.

6. In Quartus II, select: Assignments -> Settings

7. On the left hand side of the window, select the EDA Tool Settings -> Simulation to the following:

9. Select OK.

7.3 Run RTL Simulation

1. In Quartus II, select: Processing -> Start -> Analysis and Synthesis.

2. To run the RTL simulation, in Quartus II, select: Tools -> Run Simulation Tool -> RTL Simulation.
This step will automate the set up of ModelSim-Altera and compiling code within ModelSim-Altera.

Please disregard the errors in Modelsim

3. Once the compilation in the Transcript Window is finished, the next step is to run the simulation.

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 97

Simulate code

The signals and waveforms can be added manually or via script. A script was created, and it can be executed to automate the

simulation.

1. To run the script in ModelSIM select: Tools -> Tcl -> Execute Macro

2. Select: C:\altera_trn\SoCKit\SoCKit_HW_lab_14.0\Script_to_run.tcl.

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 98

3. The simulation results should now be displayed as:

4. Drag cursor1 in the Wave window so that the signal names can be shown completely:

5. Select: View -> Zoom -> Zoom Full to see the entire simulation

Hardware Validation with Simulation (Do at home Exercise)

SoCKit HW Lab Instructions, Version 14.1 99

7.4 Validate simulation

Validation of simulation is important to ensure that the results in the designs are correct. For the PIO component, there are

input and output signals. The input signals are chipselect, clk, reset_n, write_n, address[1..0], and writedata[31..0]. The

output signals are out_port[3..0] and readdata[31..0] as seen below.

Compare the simulation waveform results to the following comments

Inputs:

1. Chipselect (soc_system_led_pio/chipselect) is set to high for the entire simulation; therefore, the led_pio component
is enabled.

2. Clock (soc_system_led_pio/clk) is set to toggle, since is a clock signal.
3. Reset_n (soc_system_led_pio/reset_n) is first initialized as 0 and then high (1) to ensure the reset is correct.
4. Write_n (soc_system_led_pio/write_n) is set to 0 since it is an inverted write signal.
5. Address (soc_system_led_pio/address_n) is set first to 11 (to show that there is no output when the address is 11),

and then 00 (to show there is output with this address)
6. Writedata (soc_system_led_pio/writedata) is a 32 bit Avalon number that is written to the PIO.

Outputs:

1. out_port (soc_system _led_pio/out_port) is the 4 bits to the LED. The 1111 signal, which comes for the writedata,
occurs one clock cycle after the address is set to 00. The 1111 signal then changes to 0101, after one clock cycle of
the writedata. This shows that LED does toggle as expected.

2. Readdata (soc_system _led_pio/readdata) is the read data. This PIO does not use this signal, because the PIO is set to
be an output.

Congratulations!

You have just run a simulation.

Taking the next Step

SoCKit HW Lab Instructions, Version 14.1 100

MODULE 8. Taking the next Step

Altera has a number of resources available to assist you in further product development at www.altera.com/embedded

Some of the resources available are:

Get more information about Qsys and SOC with online training:

 http://www.altera.com/education/training/curriculum/embedded_hw/trn-embedded_hw.html

 http://www.altera.com/education/training/curriculum/embedded_sw/trn-embedded_sw.html

Get more information about Qsys:

 System Design with Qsys Reference Manual

 http://www.altera.com/literature/hb/qts/qsys_intro.pdf

 Creating custom Qsys Components

 http://www.altera.com/literature/hb/qts/qsys_components.pdf

Visit the rocketboards.org community web site

http://www.rocketboards.org/

Arrow SoCKit Evaluation Board support site

http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard

Altera SoC Development Board support site

http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard

Get more information about the SoC HPS

 Hard Processor System Technical Reference Manual

 http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf

Get more information about the SoC Embedded Design Tools

 Embedded Software for the Cortex-A9 MPCore Processor

 http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html

http://www.altera.com/embedded
http://www.altera.com/education/training/curriculum/embedded_hw/trn-embedded_hw.html
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-a9-embedded-software.html

Taking the next Step

SoCKit HW Lab Instructions, Version 14.1 101

Get additional SoC training

 Designing with an ARM based SoC

 http://www.altera.com/education/training/courses/ISOC101

 Developing Software for an ARM based SoC

 http://www.altera.com/education/training/courses/ISOC102

For all resources visit www.altera.com/embedded

http://www.altera.com/education/training/courses/ISOC101
http://www.altera.com/education/training/courses/ISOC102
http://www.altera.com/embedded

