NN\OW /AOERA. Five Years Out

SOCﬁit

SoC Software Lab Instructions

Version 16.0 10/24/2016 Tutorial
Table of Contents

OVERVIEW 2

MODULE 1: Getting STartedcoicveiiiiiiiiiiiiiiiiiiiiiiiiiinieiiisieiiseeeiisseeiesnesiessteismsseeiesssessssstesessssessesssnesssssssesesssssene 4
1.1 ACQUIriNg the AITOW SOCKILeeiiiiieeiees ettt et te e s e aenaesteesaesbestesseeneestesreeneeneenrens 4
1.2 Download the Altera DeSigN SOTIWAIE..........ccoiiiieiiiieee sttt n et seeseens 5
1.3 Install the Altera DESIGN SOFIWAIEcoviiiiiiieece ettt sttt b et e neens 8
1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW [ab)cccoovveiiiiccc e 16
1.5 DOWNIOAA PUTTY ettt bbbt b b bbbt bbbtk b bbbt e bt e b b e bt eb e e b b et e bt benbe b eneas 16
1.6 Get the Cyclone V SoCK:it ready for the Labs (Complete this at the Workshop)cc.ccocevvvieiincinicninnenens 17
1.7 Configure the Serial Terminal for the Labs (Complete this at the WOorkshop).........cccceeevevivniveienivin e 19
1.8 Preparing the SD Card..........cccviiieiiiiiiseee sttt ettt steese e aesbesse et estesbeeseesaeseenneeneeneesaenreeneenrees 20

MODULE 2: Examine the SyStem DeSISNceeeeeeeeeeeeeemeeeeeeenmmeenneeeeeeeeeeeeeeesesseesssnss 21
2.1 SYSTEM AFCRITECIUE ...ttt bbbt e e st et e b nb e e beebe st e enenbesbenbeneenes 21
2.2 EXaming the CYCIONE V SOCKIL.......ciuiieiieiie ettt sttt ettt sttt re bbb e etesbeseeneens 22

MODULE 3: Generate, Build and RUN the Preloader ... iiieeeiiiieeeiiiieneiiiieneieiieneesienesesiesssesrsnssestssssessenssssssnsssssesssssssnnens 23
3.1 GENErate the PrEIOAUETc.eeiieiitiieeie et bbb b ettt bbbt bbb e bt sbe b e 24
3.2 BUIIO TNE PIEIOAAETccueeeieeie bbb bbb bbbttt b e bbb b b eeb et nbe e s 28
3.3 Download a hardware image to the FPGA ...ttt sre s 30
3.4 Launch DS-5 Embedded Development Suite & Import the Preloader project...........ccovvereenieneneneesesieneenes 32
3.5 Create a Debug Configuration for the Preloader PrOJECt.........ccoveiiiiieeie it 35
3.6 Step Through and Run the Preloader PrOJECTccccv ittt 40

MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS).......cceeeeeeeeeeeeeeeeeeeeeeeeneeeneeeneennennnnnnes 45
4.1 Validate the FPGA Peripherals from DS-5ooiiiiiiieicse ettt 46
4.2 Validate the FPGA Peripherals from a simple Linux ApPlCationccccviveviiiiieiieie e 50
4.3 Validate the FPGA Peripherals using Linux Device Drivers (ModulEs)cccccovvveieeresiesesiere e e e e 55
4.4 Examine the Device Tree BIOD (DTB) ..ottt bbb 58

MODULE 5: Additional DS-5 traiNingceeeeeeeeeeeemememeemmmemmemmemmeemmmeseemssmmsesmss 63

MODULE 6: TaKing the NeXt STeP ..cceuuiiiiiiiieiiiieiiiiteeneeeeesseeeennnssseeesseeesnmsssssssseeesnmssssssssssesnnnssssssssssesnnnssssssssesennnnsssssnnenes 64

SoCKit SW Lab Instructions, Version 16.0 1

VAU EAITERAY Five Years Out

OVERVIEW

OVERVIEW

The Altera SoC combines a Hard Processing System (HPS) and an FPGA on a single device. The HPS has dual core ARM
Cortex-A9 MPUs and a host of peripherals such as DDR3 controllers, Ethernet MACs, SPI controllers and many more. The
FPGA portion of the device is tightly coupled through high performance bridges to the HPS. The designer can add peripherals
they create or third party IP to the FPGA and map it into the HPS. Thus you have a flexible and very powerful solution.

This software lab aims to answer the following questions that a developer might have:

How do I build and debug software to boot my custom HPS configuration?

How do | map the FPGA peripherals into the HPS memory map?

How do | address the individual registers within these peripherals?

How does my host OS know which peripherals have been added and which device drivers to load?

The HPS is configured using Qsys, Altera's FPGA IP integration tool. Configuration includes selecting DDR memory,
determining clock frequencies and selecting which HPS peripherals your design will use. As such, Qsys inherently has most of
the information to satisfy the questions asked above. Quartus is also used to define the HPS peripheral pin outs.

These two Altera FPGA development tools will generate the files needed for the transfer of design information from the
hardware to the software domain. A significant portion of the software modules will use these handoff files to build a
preloader, examine the system register set (including FPGA registers), and lastly to follow the path of the Device Tree from
the .sopcinfo file to the Device Drivers in Linux.

Module Summary:

The Software labs are based on the Golden Hardware Reference Design (GHRD) that is provided with the SoCKit. You will
examine the architecture of the GHRD in Module 2.

In Module 3 you will learn how to create, build, and run a custom preloader that will be used to boot a high level operating
system.

In Module 4 you will see how to incrementally validate the peripherals created in the FPGA. First you will use the extended
HPS register set (including those from FPGA peripherals) to read and write to those FPGA peripherals from the DS-5 debugger.
Then you will see how to access them from a Linux application, and finally how to address them from Linux device drivers.

Module 5 is a bonus lab that shows how to cross trigger during debug between the CPU and FPGA domains.

SoCKit SW Lab Instructions, Version 16.0 2

N\OW /AVOERYA, Five Years Out

OVERVIEW

Hardware to software domain transfer:

The diagram below shows three main areas of transfer from the hardware to software domains.

The handoff files necessary to create a custom preloader
The .svd file that describes the FPGA peripherals and is used by the DS-5 register function
The .sopcinfo file that describes all of the HPS devices selected in Qsys and those custom peripherals added in the

FPGA. These are used to build a device tree. The device tree is used by the Linux kernel to determine which device
drivers to load at boot time.

Handoff
files

™

e
So i e e
| HW Design ==+ ACDS = DS-5
m Debugger
—— DeviceTree ,

m Generator Device Tree
For 0

SoC EDS H e
O

SoCKit SW Lab Instructions, Version 16.0 3

NN\OW AO[ERYA, Five Years Out

Getting Started

MODULE 1: Getting Started

Your first objective is to ensure that you have all of the items needed and to install the tools so that you are ready to create
and run your design.

List of Required Items:

Arrow Electronics SoCKit evaluation board
Quartus Prime v16.0 Stand-alone Programmer
Altera SoC EDS v16.0

PuTTY terminal emulator

Computer with Windows 7, 4 GB RAM, minimum of I3 core and over 10 GB free hard disk space for the Quartus
Prime install

o Lab Design Files

1.1 Acquiring the Arrow SoCKit

To order a SoCKit please click on the link below

Order a SoCKit from Arrow Electronics

SoCKit SW Lab Instructions, Version 16.0 4

NN\OW AO[ERYA, Five Years Out

http://components.arrow.com/part/search/sockit?region=na

Getting Started

1.2 Download the Altera Design Software

You will need to install the following design software packages:

e SoC Embedded Design Suite (EDS) v16.0

The Programming Software can be downloaded from the Altera web site.

e Go to the Altera Download web page at https://www.altera.com/downloads/download-center.html.
e On the left margin, select the Embedded Software, then select SoCEDS.

Download Cent
Get the complete 5

Design Software

Embedded Software
SoC RTOS and HWLIBs Support
SoC EDS

Board System Design
Board Layout and Test

Legacy Software

Quartusg Prime

Design Software

o myAltera Account Help & Terms and Conditions

Three Quartus Prime editions to meet
your system design requirements

Which Edition of the Quartus software supports my device?

Quartus Prime software Pro edition”
Paid license required

Includes MegaCore IP Library

Free 30 day trial

Download p

“The Quartus Prime software Pro edition version 16.0
supports the following device families: Arria 10.

Quartus Prime software Standard edition”
Paid license required

Includes MegaCore IP Library

Free 30 day trial

Download P

“The Quartus Prime software Standard edition version
16.0 supports the following device families: Arria I,
Arria 10, Arria V, Arria V GZ, Cyclone IV, Cyclone V,
MAX II, MAX V, MAX 10 FPGA, Stratix IV, and Stratix V.

Starting with version 16.0, Quartus Il Subscription
Edition is now Quartus Prime Standard Edition.

SoCKit SW Lab Instructions, Version 16.0

Quartus Prime software Lite edition”

FREE, no license file required
Includes MegaCore IP Library

IP Base Suite license available for purchase

“The Quartus Prime software Lite edtion version 16.0
supports the following device families: Arria ll, Cyclone
IV, Cyclone V, MAX II, MAX V, and MAX 10 FPGA.

Starting with version 16.0, Quartus Il Web Edition is
now Quartus Prime Lite Edition.

N\N\OW AO[ERA,

Related Links

& What's New

& Compare Quartus Prime
Editions

@ Compare ModelSim-Altera
and ModelSim-Altera Starter
Edition

' University Software

0 Installation and Licensing
Manual

[Software Installation FAQ

@ PowerPlay Early Power
Estimators (EPE) and Power
Analyzer

5

Five Years Out

https://www.altera.com/downloads/download-center.html

Getting Started

e Select release 16.0, Windows Operating System, and Akamai DLM3 Download Manager as shown below, then
press the Download button.

QuartUS@Prime

Design Software

Design Software SoC Embedded Design Suite
EpReduel it Release date: May, 2016 SoC EDS
Archives Latest Release: v16.0 Embedded Design Suite

Licensing

Select release:
Software

_ My
Operating System @ @ windows O /:-\ Linux

Board System Design

(O] i Opi
Board Layout and Test Download Method @ ® Akamai DLM3 Download Manager © Opirect Download

Legacy Software

Download and install instructions:
1. Download SoC EDS software into a temporary directory.

2. Run the SoCEDSSetup-16.0.0.211-windows.exe file.

Refer to the Software Resources page for more information, such as Community Support and Ecosystem.

SoC Embedded Design Suite (EDS)
Size: 2.4 GB MD5: B558B3278CAAODSA78D15B545DFDODAB

e Login to your myAltera account. Use your existing login, or create your myAltera account if you do not have one.

SoCKit SW Lab Instructions, Version 16.0 6

NN\OW AO[ERYA, Five Years Out

Getting Started

myAltera

Welcome to myAltera
This is your personalized myAltera portal website. From
information related to your Altera.com online account in ¢

@ myAltera Sign In @ myattera Account Help & Terms and Conditions

User Name
Forgot Your User Name or Password?
Password

[ZlRemember me

Don't have an account?
©® Create Your myAltera Account
Your myAltera account allows you to file a service request, register for a class, download software, and more.

Enter your email address
Note: If your email address already exists in our system we wil retrieve the
associated information.

Create Account

e Select a location.

Save As

Savein: I | Quartus 160_webedition j = e g

P

Name Date modified Type

L=
Mo items match your search.
Fecent Places y

Desktop

Libraries

A

Computer

Metwork

< T |

2
File name: ISoCEDSSaup—16.D.ﬂ.21‘Iwindows j Save I
Save as type: INI Files ;I Cancel |

e The download of the selected files will begin once you have chosen a folder to save them in.

SoCKit SW Lab Instructions, Version 16.0 7

NN\OW AO[ERYA, Five Years Out

Getting Started

Akamai DLM3 Download Manager: 1 files in total. ®

The files you selected are being downloaded to the directory you chose. You can pause and resume the download at any time.
If the download manager does not download any of the files, you can manually download the files with the direct links in the
list below.

iShow direct links:

Download In Progress. (1 of 1 files)

Total Download Size = 2.39GB Download Speed = 2.66MBps
Remaining Size = 2.38GB Estimated Time Remaining = 15 minutes
Download Location = D:/download/Quartus160_webedition

Downloading bundle

Total Progress 0.49%

SoCEDSSetup-16.0.0.211-windows.exe (1 of 1): 0.49%

| 0

e If you are using Internet Explorer it may block the download. Click the options bar to allow the download.

% To help protect your security, Internet Explorer blocked this site from downloading files to your computer. Click here for options...

1.3 Install the Altera Design Software

e Obtain a 30-day evaluation license for SoC EDS Subscription Edition by clicking the activation code link below.

http://ds.arm.com/altera/altera-eval-edition/

e You will be provided with an activation code. Use this code when prompted by the ARM licensing
manager.

2. License with Activation Code Altera Evaluation Edition
}Activation Code

Start ARM Development Studio 5 and open the license manager. If this is your first time
using Development Studio, then a popup dialog will automatically ask you if you wish to open
the license manager, otherwise it can be opened from the "Help" menu.

Choose "Add License. ", and enter your Activation Code displayed on this page to obtain a
license.

Work through the wizard to select the Host ID to lock your license to, and enter or create your
ARM account details. Activation Code

Once complete, the license manager can be closed as the product is ready to use.

SoCKit SW Lab Instructions, Version 16.0 8

NN\OW AO[ERYA, ‘ Five Years Out

http://ds.arm.com/altera/altera-eval-edition/

Getting Started

downloaded. Click Next to continue.

e Accept the license agreement and click Next.

lesign Suite (EDS) 16.0.0.211

Setup - SoC Embedded Design Suite (EDS) 16.0.0.211

Welcome to the SoC Embedded Design Suite (EDS) 16.0.0,211 Setup Wizard,

For more information about Altera software, go to http:/fwww.altera.com.

w# Installing SoC Embedded Design Suite (EDS) 16.0.0.211 = | B e

You can view the full license agreement at the link below or use —install_lic option from command-iine to get the license agreement
files before the installation. You must accept the terms of the agreement before continuing with the installation.
hittp: //dl. altera. com/eula

License Agreement Mm
®

SOC EMBEDDED DESIGN SUITE (EDS) LICENSE AGREEMENT VERSION

Copyright (C) 1991-2016 Altera(R) Corporation. All rights

reserved. "Quartus" is a registered trademark of Altera Corporation

in the U.S. and other countries. Any other trademarks and trade names
referenced here are the property of their respective owners. Certain
files, programs, or other materials provided in connection with the
Licensed Software may originate or contain compenents from Third Party
Licensors and are licensed to You pursuant to the terms of the

16.0 B

() I accept the agreement
Do you accept this license? ~ £ s

() 1 do not accept the agreement

InstallBuilder

SoCKit SW Lab Instructions, Version 16.0

N\ROW

/O[S RYA),

Start the SoC EDS Installation by double-clicking the SOCEDSSetup-16.0.0.211-windows.exe file that was

9

‘ Five Years Out

Getting Started

e |f Quartus Prime Lite was previously installed in for the SoCKit Hardware Lab, then set the installation directory to
the Quartus Prime Lite installation directory (\altera_lite\16.0) instead of the default use all the default location
of \altera\16.0.

w# Installing SoC Embedded Design Suite (EDS) 16.0.0.211 =

Installation Directory m-;m
®

Spedfy the directory where SoC Embedded Design Suite (EDS) 16.0.0.211 will be installed

Installation Directory | C:\altera\16.0

InstallBuilder

< Back][Next =][Cancel

o Install the default selections as shown below and click Next to continue, then Next on the summary screen.

w# Installing SoC Embedded Design Suite {EDS) 16.0.0211 (o= e

Select Components Mm
e

Select the components you want to install

SoC Embedded Design Suite (EDS) 16.0.0,211 (4108MB) Select a companent for more information
Quartus Prime Programmer and Toals (1490.6MB)

InstallBuilder

< Back][Mext >][Cancel

SoCKit SW Lab Instructions, Version 16.0 10

NN\OW AO[ERYA, Five Years Out

Getting Started

When the SoC EDS installation completes, click Finish to install the USB Blaster Il and FTDI drivers and DS-5.

-
¢ Installing SoC Embedded Design Suite (EDS) 16.0.0.211 =8 &

SoC Embedded Design Suite (EDS) 16.0.0.211 Installation Complete

Setup has finished installing SoC Embedded Design Suite (EDS) 16.0.0.211.
Launch USE Blaster II driver installation

Launch FTDI driver instalation

Launch DS-5 installation

< Back Cancel

e Accept all the defaults for the driver installation.

SoCKit SW Lab Instructions, Version 16.0 11

NN\OW AO[ERYA, Five Years Out

Getting Started

e Accept all the defaults for the DS-5 installation, including all drivers. If you are notified of a System Pending
Reboot, please ignore this and continue.

- N
%) ARM D5-5 v5.23.1 Setup =R

Welcome to the ARM DS-5 v5.23.1 Setup
Wizard

Please wait while the Setup Wizard prepares to guide you
through the installation.

Computing space requirements

Back Next

") ARM DS-5 y5.23.1 Setup ST
= Hation‘:\l'izard .
You have completed the DS-5 v5.23.1 ARI I .Installation of ARM DS-5 v5.23.1
Driver Installation Wizard is Complete.

. . . Click the Finish button to exit the Setup Wizard,
The drivers were successfully installed on this computer.

*You can now connect your device to this computer. i your device
came with instructions, please read them first.

Driver Name: Status i
" ARM Ltd (WinlUSB} USB... Readytouse El
~ ARM Ltd (WinlUSB} USE... Readytouss
~ ARM Ltd (usbser) Ports Ready to use -
" Launch release notes Back Cancel
Garen o

Install the 30 day DS-5 Altera Edition license

e Launch DS-5. Start --> All Programs --> ARM DS-5 v5.23.1 --> Eclipse for DS-5 v5.23.1
e A Workspace Launcher window will ask you to select a workspace.

e Press OK to select the default.

e You will see a No Licenses Found window. Select Open License Manager.

SoCKit SW Lab Instructions, Version 16.0 12

NN\OW AO[ERYA, Five Years Out

Getting Started

’
= No Licenses Found

===

ARM DS5-5 requires a valid license in order to work, and no license is currently
' configured.

Use the ARM License Manager to obtain and add licenses. You can open the ARM
License Manager at any time from the Eclipse Help menu.

Remind Me Later

I [Open License Manager...]

e Press the Add License Button in the ARM License Manager window.

& ARM License Manager

View and edit licenses

Configure licenses and diagnose licensing problems.

Configuration l@

Add License...

Delete License

Select the toolkit that you intend to use:

No toolkits available

Please be aware that the license will expire 30 days after you perform the next step.

o Select the first option as shown below and click Next.

£ Add License

Select License Type

Select the type of license that you would like te use.

@ Use a license file, license server, serial number, or activation code

() Generate a 30-day evaluation license for DS-5 Ultimate Edition

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

Five Years Out

Getting Started

e Enter the activation code that you received earlier. Press the Next button.

© Add License

Obtain a new license

Select the type of license to create for this computer

Q) Enter a serial number or activation code:

(1

Use an existing license file or license server address

Manually obtain a license via www.arm.com website (advanced)

7™\
@

inish Cancel
|

Use the pull down menu to select a host ID. Press the Next button.

S Add License

Choose network interface

Cheoose a network interface that the license will be lecked to

address later changes.

The new license will be locked to one of your computer's network interfaces, It is recommended to select a
physical network interface. The license will stop werking if a virtual network interface is selected and its MAC

Network interface: | BEACGFEDADSC - Realtek PCle GBE Family Controller

<Back || Net> | Finish

Cancel
h

Enter your ARM account email address and password.

If you do not have an account then click on the link to create one.

e Press the Finish button.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

14
Five Years Out

Getting Started

= Add License (o [

Developer account details
Enter the ARM developer (Silver) account details

Enter account details:
Email:
Password:

Forgot password? Click here to reset your password.

Don't have an account? Click here to create one.

® o> [

i N
& ARM License Manager ﬂ

View and edit licenses

Configure licenses and diagnose licensing problems.

Cenfiguration | Diagnostics

+" D5-5 Altera Evaluation Edition.lic Add License...

Delete License

Select the toolkit that you intend to use:

’DS-S Altera Edition (Evaluation)

il

® Close

e You can now close DS-5.

SoCKit SW Lab Instructions, Version 16.0 15

NN\OW AO[ERYA, Five Years Out

Getting Started

1.4 Extract the SoCKit Lab Files (Ignore if this has been done in the HW lab)

e Create a folder c:\altera_trn on your PC.

e Click on the following link to download SoCKIT Materials_16.0.zip

e Save it to c:\altera_trn on your PC.

e Extract the SoCKIT_Materials_16.0.zip file to this folder.

1. SoCKIT_Materials_15.1.zip
Open

Open in new window

\—/

{, Extract Compressed (Zipped) Folders

Select a Destination and Extract Files

Files will be extracted to this folder:

e The c:\altera_trn directory should look like this:

4 L SoCkit

1.5 Download PuTTY

P
gvv » Computer D[OS (C:) » altera_trn » SoCKIT_Materials 151 D]

File Edit View Tools Help

Organize v 4 Open

Bl SoCKIT_Materials_151

SoCKit_HW_Lab_15.1
SoCkit_SW_lab_15.1

Include in library v

Share with v Bumn New folder

- N
Name

SoCkit

") SoC_HW_Lab_15.1.pdf
"1 SoC_SW_Lab_15.1.pdf

e Download PuTTY by clicking on this link: Download PuTTY here
e Noinstallation is required. Move the .exe file to a convenient location that will be easily accessible during

the lab.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

16

Five Years Out

http://rocketboards.org/foswiki/pub/Documentation/ArrowSoCKitEvaluationBoard/SoCKIT_Materials_15.0.zip
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Getting Started

1.6 Get the Cyclone V SoCKit ready for the Labs (Complete this at the Workshop)

Please connect cables to the connectors shown in the diagram below. All cables are provided in your SoCKit.

e Connect the micro USB cable to the USB host connector on your laptop and to the USB Blaster Il connector on the
SoCKit.

e Connect the second micro USB cable to the second USB host connector on your laptop and to the UART
connector on the SoCKit.

e Connect the Ethernet cable to the Ethernet connector on your laptop and to the Ethernet connector on the
SoCKit.

e Connect the Power Supply to the Power connector on the SoCKit.

USB Blaster Il UART Ethernet

rru';.

SoCKit SW Lab Instructions, Version 16.0 17

NN\OW AO[ERYA, Five Years Out

Getting Started

There are a few jumpers that require configuring before proceeding with the labs.
e BOOTSEL[2..0] jumpers. These should be configured as "100" to select boot from SD card 3.3V
e CLKSEL[1..0] jumpers. These should be configured as "00" for the slowest HPS peripheral clock speed option.

Please ensure that the jumpers are configured as indicated below.

Modify the default MSEL bit settings. The board needs to be set to configure in the FPPx32, fast, compressed mode. This will
allow u-boot to configure the FPGA.

e SWH6 is located on the bottom side of the SoCKit.
e Please change MSEL[0:4] to 01010.

SoCKit SW Lab Instructions, Version 16.0 18

NN\OW AO[ERYA, Five Years Out

Getting Started

Verify that the JTAG chain is correctly configured. The JTAG chain switch is located in to the right of the green audio
connector.

e HSMC_EN should be disabled (left position) and the HPS_EN should be enabled (right position).

/, i r " ﬂ '
/ — o

HSMC EN /& = =m g

|

HPS_EN ~ JTAG CHAIN SW

1.7 Configure the Serial Terminal for the Labs (Complete this at the Workshop)

Caution! Do not continue until you have done the following:

o Eject the SD card before you power the board on.
e Turn your SoCKit on.

Verify the USB to UART COM Port. Open Windows Device Manager and look for the USB Serial Port under Ports.
It may take a minute or longer for Windows to identify the hardware.

Control Panel (32) =1 Device Manager

5 Devices and Printers

File Action View Help
4 Search Everywhere <,‘2'l E:> | EE] | E E | :L:

devce <] (Shutdown > ‘ 413" Ports (COM & LPT)

| LT USB Serial P

e Open PuTTY and configure it for Serial, 115200 baud, and COMXxx as shown in your Device Manager. Press Open.

#2 PUTTY Configuration ==
Category:
=+ Session Basic options for your PUTTY session
TE““ L_Dﬂlﬂ‘”g Specy the destination you want to connect to, £ COMIS - PuTTY
= Terminal o /f-_-\
Keyboard S peed
el COM16 115200
| - Features Connection type
5 Window Raw () Telnet () Riogin () SSH
Appearance Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection
i Colours Default Setings s
=1 Connection altera soc dev kit
i Data aters_soc_kit_with_log L
Pray ametek_aik == |
ametek_scm
|- Telnet armow sa6 dev kit [pecte
i~ Rlogin amow soc dev kit_13.1 %
SSH
""" Sersl Close window on 2xt
Aways Never @) Orly on clean exit

You may now proceed.

SoCKit SW Lab Instructions, Version 16.0 19

f\.N-\E\N @ Five Years Out

Getting Started

1.8 Preparing the SD Card

If you have purchased the SoCKit online, then your kit will most likely not contain an imaged SD card. The SD card is used to

boot the Linux system and is used in a number of the Modules.

Please follow the links below to the rocketboards.org web page that will provide step by step instructions on how to do so.

Creating an SD Card using a Windows Host

Creating an SD Card using a Linux Host

CONGRATULATIONS!

You have just completed all the setup and installation requirements and are now ready to examine the system-level design.

SoCKit SW Lab Instructions, Version 16.0 20

N\OW /AVOERYA, Five Years Out

http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard160LinuxGettingStarted#Creating_an_SD_Card_using_a_Windows_Host
http://rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoard160LinuxGettingStarted#Creating_an_SD_Card_using_a_Linux_Host

Examine the System Design

MODULE 2: Examine the System Design

Module Objective

In this module you will review the architecture of the design that was created in Qsys. You will also examine the layout of the
SoCKit.

2.1 System Architecture

There are many ARM 49 ARM A9 rard Processor System

components on the SoCKit 15 Ds 1§ | D% DoR

that can be used, including L2 —_—1

the LCD, flash, Audio DACs,

and R. TMC/Trace QsPl
USB OTG GPIO

The system was created in Gb Ethemet ROM FC

QSys using a standard SOMMC UART

library of re-useable IP NAND Flash RAM B4KB CAN

blocks. The orange section Timers

of this diagram is the HPS FECA Manager

section, while the green e

section is the FPGA
section. The HPS section

|

was conﬁgured in the HPS HSP2FPGA LWHPS2FPGA FPGA2HPS

[[5
component in Qsys. There — [l L] ,_i|
are three bridges between S0 [S]%

=! |- M
the HPS and FPGA Onchip RAM PIOLED [S[3 .JTAII:'J“_Ihhster
sections. You will focus on PIO Button [5 [.
= =

peripherals connected to PIO DIPSW [5[] =
the LWHPS2FPGA bridge
and for this lab specifically,

the LED PIO. They are
mapped through the
bridge into the HPS

addressable map. M
Interrupt Capturer JTAG | \unn TAG —— vrtual JTAG TAP
| JTAG HUD el Conbroier

IMaster -
remace son 1Py | | (Ham ®

SoCKit SW Lab Instructions, Version 16.0 21

NN\OW AO[ERYA, Five Years Out

Examine the System Design

2.2 Examine the Cyclone V SoCKit

Examine the components on the Cyclone V SoCKit.

USB-Blaster IT Uart Video Out
(VGA) .
USB2 Ethemet Audio
OTG 10/100/1000 Line-In, Line-Out, Mic-In
' ' s Emmm .

.] - FPGA BDR3 |- S W[HPS Boot
Power ON / OFF § : R _ 1GB : QSPI 1 Gb
“‘ ‘- L8 . - . : X
LTC : &
Expansion : L = ¢ Altera — HSMC Type
Connector VINIII
FPGA Config
QSPI 256 Mb
Bitmap
Display
CLKSELS
BOOTSEL t B e
Jumpers ’
l - \ /
~ Wam HPS Buttons FPGA Switches & =
reset LEDs
Cold HPS Switches & FPGA Buttons
reset LEDs

Note: The micro SD connector and the configuration DIP switch are located on the reverse side of the board under the HPS

Buttons.

CONGRATULATIONS!!

You have just completed the examination of the system-level design.

SoCKit SW Lab Instructions, Version 16.0 22

NN\OW AO[ERYA, Five Years Out

Generate, Build and Run the Preloader

MODULE 3: Generate, Build and Run the Preloader

In this section we will examine the path from the handoff files through the

creation of the preloader as shown in the graphic on the right.

The preloader, also known as the spl or u-boot-spl (second program loader) is
essential to being able to boot an operating system on an Applications class
processor, such as a Cortex A-9.

The steps for booting an Application Class Processor include the following:

1. The Boot ROM is run from power-on-reset or warm reset. Its only
function is to read the BOOTSEL and CLKSEL settings and read the
preloader from an appropriate source such as SD, QSPI, or NAND
flash.

2. The preloader is copied from the source to On-Chip RAM (64K limit)
and executed. Its main functions are to set the appropriate clocks for
the processors and peripherals by manipulating the PLLs and setting
up pin muxing required to route selected peripheral controllers to I/O
pins. It also sets the DDR memory controller parameters and
calibrates the memory. When this is complete it will load the boot
loader (in our case U-Boot) from the external boot source to DDR and
start its execution.

3. U-Boot will load the kernel and the Device Tree Blob into memory
from the boot source. It will launch the kernel and pass the DTB
contents to it.

The Altera SoC is unique among applications class processing solutions
because the user can customize and add to the peripheral set attached to it
by modifying the FPGA. All SoC customization is implemented by the user in
the Qsys tool. This customization is passed to the software domain in the
form of isw handoff files. These files are used by the BSP Editor to generate
the preloader source files.

The first barrier to success that you will experience when you initially power
up your own custom SoC based board will be to get the preloader to run.
Being able to use the DS-5 Development suite and step through code will give
you insight into what is functioning on your board and what might be causing
a problem. It could be very helpful in uncovering any board level hardware
issues.

In this module you will do the following:
1. Generate the preloader using the BSP Editor

2. Build the preloader
3. Step thru the preloader using the ARM DS-5 development suite

SoCKit SW Lab Instructions, Version 16.0

N\NOW /ADO[ERYA,

C— Preloader == :—E‘
Handoff Generator Ericadery)

Handoff
files

[@iﬂ b ACDS —{:idtj_

%Q — - - —
e DeviceTree ——
L sopcinfo Generator | Device Tree

For
=
N

a N .
BootROM o
L CtAavad in An J
* N
Preloader
CtAarnd in flach
* N
U-Boot
l’ N
Linux
L sy L - n J]
! N
Run
L A a= a" J
23
Five Years Out

Generate, Build and Run the Preloader

3.1 Generate the Preloader

Use the ISW handoff files and the BSP Editor to generate the customized source code for the preloader.

e Open the Embedded Command Shell by navigating to the embedded install directory for the SoC EDS and launch

the Embedded_Command_Shell.bat.
e Double click the file to launch the shell.

v Computer » O5(C) » altera » 160 » embedded »

Organize v Include in library + Share with = Burn New folder
-
[Favorites Hame
drivers
=l Libraries ds-5
ds-5_installer
¥ Homegreup embeddedsw
examples
1M Computer host_tools
&, o5 ip

—w DATAPARTL (D)
o DATAPARTZ (E:)

Embedded_Command_Shell

embedded_command_shell

[[&) &

ENV

% hsp-editor

SoCKit SW Lab Instructions, Version 16.0

N\NOW /ADO[ERYA,

Date modified

17/06/2016 11:19 ...
016 11:37 ...
016 11:20 ...

016 11:19 ...

28/04/2016

28/04,2016

Type

File folder

File folder

File folder

File folder

File folder

File folder

File folder
Windows Batch File
SH File

SH File

24

Five Years Out

Generate, Build and Run the Preloader

e Select File --> New HPS BSP... to create a new BSP.

. BSP Editor - TPURY . ..oe
%) eat Toos e
New o5 TTBSP... Ctri«N | Linker Script | Enable Fie G | Terget BSP Directory
[newtesese.. CuieH |
Open... Ctrl+0
Save Ctrl+S Vergion:
Save As
Exit Ctrls X

e Identify the location of the Preloader Settings Directory. This directory contains the xml files that Quartus / Qsys
has generated. They describe the customized peripheral and DDR settings for the SoC.

e Pressthe [«] button to navigate to the directory
C:\altera_trn\SoCKIT_Materials_16.0\SoCkit\SoCkit_SW _lab_16.0\hps_isw_handoff\soc_system_hps_0 and
then press Open.

- BSP Editor o/@] % T

File Edit Tools Help

Main | Software Packages] Drivers] Linker Script | Enable File Generation | Target BSP Directory

SOPC Information file:
CPU name:
Operating system: Version:

BSP target directory:

[NewBsP
Hardware
Preloader settings directory:
Software
Operating system: :u«Boot SPL Preloader (Cydone V/... Version: :defadt -
Use default locations
BSP target directory:
BSP Settings File name:
Enable Settings File relative paths
[] Enable Additional Td script
Additional Td script:
Information | Problems | Pr OK Cancel
@ Initializing BSP components...

(@ Finished initializing BSP components. Total tme taken = 4 seconds
@ searching for BSP components with category: os_software_element

SRR

e Press OK to generate the preloader and create the BSP settings file and directory.

SoCKit SW Lab Instructions, Version 16.0 25

NN\OW AO[ERYA, Five Years Out

Generate, Build and Run the Preloader

. Mew BSP

=

Hardware

Preloader settings directory:

Software

Operating system:

BSP target directory:

BSP Settings File name:

Additional Td script:

C:\altera_trn\SoCKit_Materials_16.0%ps_isw_handoffisoc_system_hps_0

:U—Boot SPL Preloader {Cyclone V... Version: :default -
Use default locations
C:l\altera_trn\SoCKit_Materials_16.0\software'spl_bsp
C:l\altera_trn\SoCKit_Materials_16.0\software\spl_bsplsettings.bsp

Enable Settings File relative paths

["] Enable Additional Td script

[OK] [Cancel]

Note the default location of the created preloader project directory is \software\spl_bsp

@\:/-4 | v LF4844 » Local Disk (C5) » alteratm b SoCkit |

Organize » Include in library + Share with + Burn

. hps_isw_handoff 0 Mame
output_files .
|| settings.bsp
. soc_system
. software
. configurations
. led_blink

. spl_bsp

e Press the Generate button to generate the preloader source and makefile.

e Press Exit once generation is complete.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

26

Five Years Out

Generate, Build and Run the Preloader

SOPC Information file:

@ Td message: "Reading preloader settings dir: C:\altera_trn\SoCKit_Materials_16.0\hps_isw_handoffisoc_system_hps_0"

@ Td message: "Generating file: C:/altera_trn/SoCKit_Materials_16.0/software/spl_bsp/generated/sdram/\sdram_config.h...”
@ Tl message: "Generating fle: C:/altera_trn/SoCkit_Materials_16.0/software/spl_bsp/generated\pinmux_config.h...”

@ Tl message: "Generating fle: C:/altera_trn/SoCkit_Materials_16.0/software/spl_bsp/generated‘pinmux_config_cydone5.c...”
@ Tl message: "Generating file: C:/altera_trn/SoCkit_Materials_16.0/software/spl_bsp/generatedireset_config.h.template...”
@ Tl message: "Generating fle: C:/altera_trn/SoCkit_Materials_16.0/software/spl_bsp/oenerated'Makefile. template...”

| @ Tl message: "Generating file: C:/altera_trn/SoCkit_Materials_16.0/software/spl_bsp/generated/pll_config.h”

Td message: "Reading file: ltera_trn\SoCKit Materials 16.0%hps isw handoffisoc system hps Olsoc system hps 0.hiofi..”

CPU name:
Operating system: U-Boot SPL Preloader (Cyclone VfArria ... Version: |default =
BSP target directory: .\,
=-Settings spl.boot
=-Common
& spl [C] BOOT_FROM_QSPI
[PRELOADER_TGZ BOOT_FROM_SDMNC
CROSS_COMPILE
=800t | [7] BOOT_FROM_NAND
BOOT_FROM_QSPI [F1 BOOT_FROM_RAM
~BODT_FROM_SDMMC
--BOOT_FROM NAND QSPI_MEXT_BOOT_IMAGE: 0x50000
BOOT_FROM_RAM)
-QSPLNEXT_BOOT_IMAGE SDMMC_NEXT_BOOT IMAGE: 0%40000
~SDMMC_NEXT BOODT_IMAGE .
" NAND_NEXT_BOOT IMAGE MAND_NEXT_BOOT_IMAGE: 0%c0000
FAT_SUPPORT
~FAT_BOOT_PARTITION 7] FAT_SUPPORT
~FAT_LOAD_PAYLOAD_NAME FAT_BOOT_PARTITION: 1
Advanced
FAT_LOAD_PAYLOAD_NAME: u-boatimg
4 [] »
|
Information | Prablems | Processing| I

m

|
@ Generated file "C:\altera_trn\SoCKit_Materials_16.0\software\spl_bsp\settings.bsp™ o
|

@le . v Computer » OS(C:) » altera_trn » SoCKIT_Materials_
: File Edit View Tools Help
Crganize = || Open Burn MNew folder
. hec_output g MName .
. hps_isw_handoff ted
.. generate
. output_files 2)
| Makefile
. s0C_systern
&: __| preloader.ds
| software -
L | settings.bs,
. configurations b tgd "
L ubocot.ds
. led_blink
. spl_bsp -
SoCKit SW Lab Instructions, Version 16.0 27

ANNN\OW /AA[ERYA), ‘ Five Years Out

Generate, Build and Run the Preloader

Take note of the generated sub-directory. The custom HPS information contained in the xml files have been converted into C
header files that can be implemented when the preloader runs. A (1) next to a peripheral (in the pinmux_config.h file)
indicates that its controller’s output signals will be routed to the appropriate pins on the HPS portion of the SoC. The
preloader will use this information when it runs the pinmux routine.

#define CONFIG_HPS_EMACO (0)
#define CONFIG_HPS_EMACL (1)
$define CONFIG_HPS_USEO (0)

- = i #define CONFIG_HPS USBl (1)
Organize = = Open = Burn Mew folder §define CONFIG HES NAND (0)
- . #define CONFIG_HPS_SDMMC (1)
- _HES_
greybox_tmp Marme Date modified 4define CONFIG HPS QSEI (1)
hps_isw_handoff I #define CONFIG_HPS_UARTO (1)
. tal db sdram 64:02PM #define CONFIG_HPS_UARTL (0)
oA=L build 06,2016 4:17 PM #define CONFIG_HPS TRACE (0)
ip = . o #define CONFIG_HPS_I2CO (0)
N— L | iocsr_config_cyclone5 64:17 PM #define CONFIG HEPS 1201 (1)
output_files = ; e
s || iocsr_config_cyclones 016 4:17 PM #dEE?“E CONFIG_HPS_I2C2 (0)
simulation : : #define CONFIG_HPS_I2C3 (0)
s R . pinmux_config 016 4:17 PM #define CONFIG_HPS_SPIMO (1)
SOC_system :
=Y’ || pinmux_config_cyclones #define CONFIG_HPS SPTML (1)
synthesis - #define CONFIG_HPS_SPIS0 (0)
| pll_config #define CONFIG_HPS_SPIS1 (0)
4 software -) #define CONFIG HPS CAND (0)
| reset_cenfig 06/2016 4:17 PM . —
a spl_bsp #define CONFIG_HPS_CAN1 (0)

3.2 Build the Preloader

The preloader can be built from within the Embedded Command Shell.

e Change to the preloader project directory within the Embedded Command Shell:
C:\altera_trn\SoCKIT_Materials_16.0\SoCkit\SoCkit_SW_lab_16.0\software\spl_bsp

BN Scygdrive/c/altera_trn/SoCKit_Materials_16.0/Sockit_SW_lab_16.0/scftware/spl_bsp

iltera Embedded Command S
ersion 16.8 [Build 2111

hep-editor

cd "C:isaltera_ternsSoCKit_Materials_16.0~Sockit_SW_lab_16.B8“=zoftware~spl_hsp"

SoCKit SW Lab Instructions, Version 16.0 28

N\OW /AVOERYA, Five Years Out

Generate, Build and Run the Preloader

ER /cygdrive/c/altera_trn/SoCKit_Material

Type make at the prompt as shown below and press enter.

16.0/Sac|

Hltera Embedded Cnmmand Shell
Uersion 16. B [Bulld 2111

& hsp—edit

5 cd “C:saltera_trnn8

¢ make

t_Materials

_16.8%8ock

SW_lab_16.0/software/spl_bsp

2W_lab_16 . Bvsoftwares~spl hsp

A tar file which contains a template of standard source files for the preloader is being copied from the SoC EDS install
directory. The custom source files are in the generated sub-directory.

The preloader will take a few minutes to build. An examination of the preloader project directory after completion shows the

project contents. The preloader ELF file resides in the \software\spl_bsp\uboot-socfpga\spl directory.
(SR}

software
configurations
led_blink
4). splbsp
generated
4 | uboot-socfpga
api
arch
board
common
disk
doc
drivers
dts
examples
fs
include
lib

SoCKit SW Lab Instructions, Version 16.0

N\NOW /AOERA,

2N /eyqdrive/caltera_trm/SoCKit_Materials_16.0/Sockit_SW_lab_16.0/scftware/spl_bsp -
i Tude /cygds el i 1s_16.0/

1hoot—506E
bofpgaspliu-boot—

i Name

arch
board
common
disk
drivers
fs
lib
spl
[depend
|| .gitignore
] Makefile
7] u-boot.st
| u-boot-spl
[u-boot-splbin
| u-boot-splids
[u-bost-spl.map

arch/arn/cpu/ar

HE AL A R ARt 74 104

age bin ubsotsoofpgasepl/u-hoot

P ler-mkpir
1-hin ubo0t—s00Fpgassply

Date medified

bin uboot:

Type

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

DEPEND File 0KB
GITIGMORE File 1KB
File
LST File
File

BIN File
LDS File 1KB
MAP File 84 KB

29

‘ Five Years Out

Generate, Build and Run the Preloader

3.3

Download a hardware image to the FPGA

Before you continue please ensure the following:

SoCKit SW Lab Instructions, Version 16.0

N\ROW

The SD card is still in the ejected position.
The SoCKit is still powered on.

-
) Quartus Prime Programmer Standard Edition - [Chainl.cdf]

Fie Edt View Processing Tools Window Help @

(&, Hardware setup... { cv Socki uss-1])

[7] Enable realk-time ISP to allow background programming when available

[
‘ File Device Checksum

&8 Auto Detect

Usercode

& Hardware Setup

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: [CV SoCKit [USB-1]

=)

Available hardware items

Hardware Server Port Add Hardware. ..
Local UsB-1

/O[S RYA),

Launch the Quartus Programmer from Start --> All Programs --> Altera 16.0.0.211 Lite Edition --> Quartus Prime
Programmer and Tools 16.0.0.211 --> Quartus Prime 16.0 Programmer
If the CV SoCKit is not visible next to the Hardware Setup button as shown below, then press Hardware Setup and
select CV SoCKit so that it populates the Currently selected hardware line, then press Close.

30

Five Years Out

Generate, Build and Run the Preloader

e Press the Auto Detect button to detect the JTAG chain.

-
4 Quartus Prime Programmer Standard Edition - [Chainl.cdf]

File Edt View Processing Tools Window Help @

& Hardware Setup...| CV SoCKit [USB-1]

[7] Enable real-time ISP to allow background programming when available

), File Device
P10 Start

b stop

(88 Auto petect |

X Delete

Checksum Usercode

e Select the 5CSXFC6D6 for Rev D kits or 5CSXFC6D6ES for earlier revisions.

-
) Select Device

B

Found devices with shared JTAG ID for device 1. Please select your device.

) SCSEBAS

_) SCSEBAGES
SCSEMAS

*) SCSTFD6DS
SCSXFC6CE
SCSXFCECBES

©) SCSXFCED6

© SCSXFCEDEES

e Two devices are discovered. The first is the HPS section of the SoC. The second is the FPGA portion of the SoC.

[~
» Quartus Prime Programmer Standard Edition - [Chainl.cdf]*

File Edt View Processing Tools Window Help @

s Hardware Setup...| CV SoCKit [USB-1]

[7] Enable reak-time ISP to allow background programming when available

W, File Device
P10 Start
wh Stop <none> SCSXFC6D6ES
<none> SOCVHPS

X Delete HPS

SoCKit SW Lab Instructions, Version 16.0

N\ROW

/O[S RYA),

Checksum

00000000
00000000

FPGA

Usercode

<none>

<none>

3

Five Years Out

Generate, Build and Run the Preloader

D Quartus Prime Prog

Select the first line for the FPGA and press the Change File button.

rammer Standard Edition - [Chainl.cdf]*

Navigate to the \output files sub-directory and select the soc_system.sof file and press the Open button.

; Hardware Setup...

CV SoCKit [USB-1]

|:| Enable reakime ISP to allow background programming when available

W start
il Stop

M Auto Detect
3 Delete

M Add File...

W Change File...
b save File

® /\dd Device. .

W yp

l,‘ﬁl Down

=

i

Type ID

File Device Checksum Usercode Program/
Configure
<none> SCSKFCEDEES 0oooooon <None> .
s ~
4 Select New Programming File @
Look in: [| Chaltera_tr\SoC....16.Dvoutput_files v] e O O L B
'th My ... || soc_system.sof
@ Erika
-
i
File name: soc_system.sof
Files of type: [Prugramming Files (*.s0f *.pof * jam * joc *.ekp *jic) v] [Cancel] 1
\

Check the Program / Configure box. Press the Start button. Wait until progress is at 100%.

» Quartus Prime Programmer Standard Edition - [Chainl.cdf]*

File Edit View Processing Tools Window Help

9

@8 Auto Detect
W Add File...
Hrc Change File...

A

.3' Hardware Setup...| CV SoCKit [USB-1] Mode: |JTAG v Progress: [[100% (Successful)] I
[7] Enable reak-time ISP to allow background programming when available
m File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase ISP
>l Start Configure Check Bit CLAMP
i Stoo C:/altera_trn/SoCKIT_Mat... SCSXFCEDEF31 029A2B2E 029A2B2E
<none> SOCVHPS 00000000 <none>

34

Launch DS-5 from the Embedded

Command Shell

Launch DS-5 Embedded Development Suite & Import the Preloader project

Note: It is possible to launch DS-5 from the Windows Start button. Do NOT do this since the preloader project

makefile requires that it be executed within a cygwin environment (the Embedded Command Shell).

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

32

Five Years Out

Generate, Build and Run the Preloader

e Type "eclipse" at the Embedded Command Shell prompt and press enter

@8 /cygdrive/c/altera_trn/SoCKit_ Materials_16.0/SoCkit_SW_Lab_16.0/software/spl_bsp C=mRE X

e Wait for a few seconds while DS-5 starts up.

Initialize Eclipse workspace

When Eclipse first launches, it is a good idea to select a specific workspace. It is useful to have a separate Eclipse
workspace associated with each set of hps_isw_handoff files.

e Eclipse will request that you select a workspace

e Pressthe [o= | button to select a workspace directory.

o Navigate to the SoCKit_SW_lab_16.0 directory.

e Press the[makenewroder | button and enter hps_workspace. Press OK.
e Press OK. The DS-5 will shutdown and reload in the new workspace.

e Close the default Welcome to DS-5 tab.

SoCKit SW Lab Instructions, Version 16.0 33

N\OW /AVOERYA, Five Years Out

Generate, Build and Run the Preloader

S C/C++ - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help

#& Welcome to DS-
=

Welcome to ARM® DS-5 Development Studio: Altera®

Edition

Tutorials, videos and other resources to help you get started quickly

Import the Preloader project

It is useful to import the preloader as a makefile project into the DS-5 environment. This allows the user to perform

source level debugging.

Select File --> Import.
Navigate to C/C++ --> Existing Code as Makefile Project. Press Next.

= Import

Select

Creates a new Makefile project in a directery containing existing code

Select an import source:

type filter text

. [= General
a = C/C++
[E] C/C++ Executable
¥ C/C++ Project Settings
Existing Code as Makefile Project

Enter spl for the Project Name.
Press the[sewe. | button. Navigate to the Existing Code Location

C:\altera_trn\SoCKIT_Materials_16.0\SoCkit\SoCkit_SW_lab_16.0\software\spl_bsp.

« Import Existing Code = [-E]

Import Existing Code

Create a new Makefile project from existing code in that same directory

Project Name
spl

Existing Cede Location

et

=

Press OK, then press Finish.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

34

Five Years Out

Generate, Build and Run the Preloader

Browse For Folder g

Select root directory of existing code

db

greybox_trmp
hps_isw_handoff
hps_workspace
incremental_db

ip

m,

output files
simulation
soc_system
E software
4| | spl_bsp il
Folder: spl_bsp
Hake New Foder

3.5 Create a Debug Configuration for the Preloader Project

Create a new Debug Configuration

&£ C/C++ - Eclipse Platform s =

File Edit Source Refactor MNavigate Search Project F
L=<j' 3T 'oTo;.‘_‘J;@'ﬁﬁ'Cc

I Project ... &2 |o] Streamli.. = O

2% 7

b = generated
> = uboot-socfpga
Makefile
= preloader-mkpimage.bin
[El preloader.ds
| |= settings.bsp

[l ubootds

The debug configuration specifies the logistics required to debug the preloader software project. Connectivity to the

SoCKit is selected here. DS-5 can be customized by using .ds scripts to perform initialization and setup functions

before debugging begins. This is also where the specific ELF file that will be source-level debugged is specified.

e Select Run --> Debug Configurations.

o Select DS-5 Debugger and press the New Launch Configuration button

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

OILIEER

type filter text
] C/C++ Application
[£] C/C++ Attach to Applic
[£] C/C++ Postmortemn Det

& | C/C++ Remote Applical
#5 DS-5 Debugger

35

Five Years Out

Generate, Build and Run the Preloader

e Enter splin the Name field.
Setup the Connection to the Target board

e Click on the Connection tab. Select Cyclone V SoC (Dual Core) --> Bare Metal Debug --> Debug Cortex-A9_0 as the
target. Make sure you DO NOT select the Dual Cyclone V SoC (2 Dual Core SoCs) option.

B~ Connection Files Gﬁ Debugger ‘-F 05 Awareness | #9= Arguments P8 Environment

Select target

Select the manufacturer, board, project type and debug operation to use, Currently selected:
Altera / Cyclone V 5oC (Dual Core) / Bare Metal Debug / Debug Cortex-A3_0

> Arria V 50C
4 Cyclone V 50C (Dual Core)
4 Bare Metal Debug
Debug Cortex-A9 0
Debug Cortex-29 1
Debug Cortex-A9:2 SMP i

m

The currently selected platform is Altera / Cycle
2 1)

Target Connection

DTSL Options Edi Configure USE-Blaster trace or cther target options. Using "default” configuration options

D5-5 Debugger will connect to an Altera USB-Blaster to debug a bare metal application.

Connections
Bare Metal Debug | Connection ’
o Click on the Target Connection pull down menu and select USB-Blaster.

Before you continue please ensure the following:

e The SD card is still in the ejected position
e The SoCKit is still powered on

e Click on the Browse button in the Connections --> Bare Metal Debug section.

SoCKit SW Lab Instructions, Version 16.0 36

NN\OW AO[ERYA, Five Years Out

Generate, Build and Run the Preloader

e Wait a few seconds for the window to populate. Select the CV SoCKit on localhost [USB-1] and press the Select

button.

-
%ConnedionBrowser - — B eem— " e

==

Connection Browser

Select atarget connection

oCKit on localhost [USB-1]

Select the files necessary for Target debug

e Click on the Workspace button in the Files sub-section of the Files tab.

e Navigate to the spl --> uboot-socfpga --> spl directory and select the u-boot-spl elf file. This file contains the obj

code and the symbol tables for the preloader software project.

Name: spl

<= Connection B Debugger % 0s Awareness | (9= Arguments .1 2] Environment

Target Configuration
Application on host to download:

Load symbols

[File System...] [Workspace...

Files

[Load symbols from file

[File System... "[Workspace...]I

®

£ Open L@ﬁ
Select a file:
a (= spl -
|Z] .depend
= .gitignore
| ® Makefile
> arch

=

(= board
(= common
=

e

> drivers
> lib

| u-boot-spl.bin
= u-boot-spl.lds
B u-boot-spl.map
u-boot.Ist

(= test

@

(

OK

J

Cancel

Configuration section

Note: Please verify that you have added "u-boot-spl" elf file to the Files section and NOT the Target

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

37

Five Years Out

Generate, Build and Run the Preloader

e Pressthe button to add another file

Filez

[Load symbols from file -

S{workspace_loc/spl_bsp/uboot-socfpga/spl/u-boot-spl}

[File System...] ’Workspace...

e Click on the pulldown arrow and select Add peripheral description files from directory.

e Press the File System button. Navigate to the soc_system sub-directory
C:\altera_trn\SoCKIT_Materials_16.0\SoCkit\SoCkit_SW_lab_16.0\soc_system\synthesis. Select it and press OK.
The Debug Configurations window should still be open at this point.

Name: spl

<4¢- Connection | a1} Files %% Debugger| ‘& OS Awareness | 9= Arguments | B Environment

Target Configuration r
g. : g Browse For Folder @
Application on host to download:

[File System...] [Workspace... Load symbols
a 1. hc_output &
Files i hps_isw_handoff !
[Load symbols from file v > |, hps_workspace —
[E] S{workspace_loc:/spl/uboot-socfpga/spl/u-boot-spl} : I output files
4 | soc_system
[File System...] [Workspace... ﬁ
_
. T 5 > 1. software -
llAdd peripheral description files from directory vll

E] Folder: synthesis

| File System... ' Workspace... Make New Folder ﬁ [W]

SoCKit SW Lab Instructions, Version 16.0 38

NN\OW AO[ERYA, Five Years Out

Generate, Build and Run the Preloader

The SVD (System View Description) xml file is located in this directory. It was generated by Qsys and can be considered a

handoff file for software debug. This file provides DS-5 with information regarding the peripheral sub-system that was

designed in the FPGA and connected to the HPS via the HPS2FPGA bridge. This will allow you to symbolically read or write to

these peripherals and they will be seen as an extension to the HPS peripheral listing in the peripheral window in DS-5.

Configure the Debugger

e Click on the Debugger tab.

o Select the Debug from entry point radio button.

o Check the Run target initialization debugger script box.

e Press the File System button and navigate to the arrow_sockit_preloader.ds script at
C:\altera_trn\SoCKIT_Materials_16.0\SoCkit\SoCkit_SW_lab_16.0\arrow_sockit_preloader.ds. Note this is not the
default preloader.ds found in the \software\spl_bsp directory.

e Press the Open button.

e Press the Debug button to start the debug session. Choose Yes if asked to switch to DS-5 Debug perspective.

Create, manage, and run configurations

@ Arun script is required

= 4
= X | B s Mame: New_configuration [
type filter text Be- Connection |5 Files @5 Debugger % 0S Awareness| 69= Arguments | Il Environment
[T] C/C++ Application
=] Ca:C++ Attach to Application P R
[©] C/C++ Postmortem Debugger i i i -
[E] C/C++ Remote Application () Connect only @ Debug from entry point () Debug from symbol main
a4 @% DS-5 Debugger [#] Run target initialization debugger script (.ds / .py)
2k hl, Ll
= Open I& stem..‘] [Workspaca...
@- j=| L < altere_trn b SoCKit_Meterials 160 » SoCKit_SW_Leb 160 » o | 4y | [Search s [lab 160 0|
~ jystem... | | Workspace...
Organize v Mew folder = - E:l l@
= :
- Favorites Name Date modified T o
=
.qsys_edit 22/06/2016 3:44 PM Fi
7l Libraries db 22/06/2016 3:44 PM Fi k
greybox_tmp 22/06/2016 3:44 PM Fi 1
& Homegroup hps_isw_handoff 22/06/2016 3:44 PM H| -
hps_workspace 23/06/2016 5:27 PM Fi
1M Computer incremental_db 22/06/2016 3:44 PM F
& osic : T |
i 05 (C) ip 22/06/2016 3:44 PM F fystem...| [Workspace...
—u DATAPARTL (D) output_files 22/06/2016 3:44 PM R
—u DATAPART2 (E:) simulation 22/06/2016 3:44 PM F
soc_system 22/06/2016 3:44 PM F
€ Network software 22/06/2016 3:46 PM F{ [
top 22/06/2016 3:44 PM Fi
|| arrow_sockit_preloader.ds 02/06/2016 4:00 PM Dj L4
|| breakpoint.ds 02/06/2016 4:00 PM D |
A d L 3l | Apply Revert
i E
3 File name: arrow_sockit_preloader.ds - [DS-S Debugger Scripts *.ds V]
ol maed) ([oo

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

39

Five Years Out

Generate, Build and Run the Preloader

Note: For more information on DS-5 scripts please click on the following link. Creating a debugger script file

3.6 Step Through and Run the Preloader Project

Add a ds breakpoint script

This script will conveniently add a few breakpoints that will assist in your exploration of the preloader code.

e Click on the Scripts tab

e Click on the Import Scripts icon 23

e Navigate to the breakpoint.ds script and press Open.

B8 Commands | History |4 Scripts 52
[E5 altera_target_check.py
25 arrow_sockit_preloader.ds

2 Open
(o) [} « alteratm » SoCKit Materials 160 » SoCKit SW_Lab 160 »
Organize » New folder
™ P Name - Date modit
gsys_edit
i Libraries db
greybox_tmp
*& Homegroup hps_isw_handoff
hps_workspace
% Computer incremental_db
& o5

s DATAPARTL (D¥)
= DATAPART? (E)

€ Network

File name: breskpoint.ds

ip

output files
simulation
soc_system
software
top

| arrow_sockit_preloader.ds

|_| breakpoint.ds 02/06/2016

+ | Scripts (*.ds, *py, .gdb,
e

e Select the breakpoint.ds script.

e Pressthe Bz Execute Selected Scripts button. Notice the breakpoints tab.

B Commands | @ History |48 Seripts 52
Dpaltera_target_check.p)r

D;) arrow_sockit_preloader.ds
¢ reak ;

#/*\u

point.ds

Bg Breakpoints £ oo

<;=='{> Linked: spl~
@ splci230 @ board_init_r+0x10 S:0xFFFF4454 [#6 T32 (Thumb)]
@ spl.c:245 @ board_init_r+0x1E 5:0xFFFF4462 [#7 T32 (Thumb]]

e Press the continue button E= (or F8) to start the debugger. The debugger will stop at the first breakpoint

SoCKit SW Lab Instructions, Version 16.0

N\NOW /ADO[ERYA,

40

Five Years Out

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0446f/CIHDIBCA.html

Generate, Build and Run the Preloader

Explore the preloader code

As was discussed earlier, the preloader is made up of standard code common to most system architecures and some
generated code based on the customized system entry in Qsys. The section of code that you will explore is specific
for the HPS, the DDR3 memory, and peripherals that were specified in Qsys. Most of the board customization occurs
in the spl_board_init function. This customization includes setting the PLLs, the HPS memory controller registers, the
HPS 1/0 banks, and implementing the necessary pin muxing.

238 spl_board_init();
1 #endif

switch (boot_device) {
#ifdef CONFIG_SPL_RAM DEVICE
case BOOT_DEVICE_RAM:
238 spl_ram_load image();
239 break;
248 #endif
241 #ifdef CONFIG_SPL_MMC_SUPPORT

242 case I W MMCL:
243 case T._DEY M2
244 case T _REV 1
@245 spl_mmc_load_image();
245 break;

boot_device = spl_boot_device();
debug("boot device - ¥d\n", boot_device);

When the board initialization is complete, the code will stop at the next breakpoint, spl_mmc_load_image. At this
point it has examined the BOOTSEL jumper settings. It will now attempt to load the next loader from the SD card and
run it out of DDR3 memory. At this point if the debugger becomes unstable and the next stage is unsuccessful, there

is a good chance that the settings for the memory controller need to be fine tuned.

e Press the the F5 key to enter the spl_board_init function.

e Examine the code.

The flow diagram below gives a good description of the order of operations taken to initialize the HPS. For more
details please visit the preloader rocketboards page at

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

SoCKit SW Lab Instructions, Version 16.0

N\NOW /ADO[ERYA,

4

Five Years Out

http://www.rocketboards.org/foswiki/Documentation/PreloaderUbootCustomization#Detailed_Preloader_Execution_Flow

Generate, Build and Run the Preloader

Low level initialization (1) Custom code can be added here (3)
Reset the watch dog (2) Flash controller configuration (4)

l l

Copy next stage boot loader image (U-Boot)
from flash to SORAM (4)

ECC pending for OCRAM (2)

Freeze all 1/O banks (3)) i
3 op wait for
1 image a(;,SDRAM ¥ watchdog
Reset all devices and bridges except watchdog
3) Pass
{ *
1 Preloader writes valid to Preloader state register to
let Boot ROM know that Preloader ran successfully
(5)
Reconfigure clock manager (3) l
1 Jump to next state boot
loader (U-Boot) (5)
Configure 1/O buffer setting (IOCSR) through
scan manager (3)
‘|' Functions & File Locations
Configure Pinmux (3)
l No |Function File location
De-assert reset for peripherals based on hand- 1 [_stant arch/arm/cpufarmv7/start.s
off (3)
l 2 |s_init() archfarm/cpu/armv7/socfpga/s-init.c
Unfreeze all IO banks (3) 3 |spl_board_init() archfarm/cpu/armvT/soctpgafspl.c
.|. For SOMMC: drivers/mmc/spl, drivers/mmc/altera_dw_mmc.c
Setup UART console (3) For QSPI: drivers/mtd/spi/spi_spl_load.c, drivers/spi/
4 |cadence_gspi.c
1 For NAND: drivers/mtd/nand/nand_spl_simple.c, drivers/mtd/
SDRAM initialization and calibration (3) nand/denall_nand.c
1 S | jump_to_image_no_argsi) common/splfspl.c
Setup & enable interrupt for OCRAM ECC &
SDRAM ECC (3)
A
SoCKit SW Lab Instructions, Version 16.0 42

ANNN\OW /AA[ERYA), Five Years Out

Generate, Build and Run the Preloader

Line 329 -409. Configure the main, peripheral and sdram PLL groups

Line 419 -426. I/0 Bank pins are configured via HPS 1/O Scan chains. Freeze the 1/0 banks before beginning the scan
operation.

Line 438 - 448. Reset all peripherals and bridges except for the L4 watchdog.

Line 462 - 464. Timer used during PLL reconfig.

Line 479 - 484. Reconfigure the PLLs. Any board level issues related to clock inputs could result in a problem here.
On the SoCKit the HPS CLKO was double the specified frequency. Executing this step caused the system to hang. This
provided a good clue and the problem was resolved soon after.

Line 500-503. Handshake the bootloader.

Line 507 - 523. The Scan Manager configures the HPS 1/0 via the scan chain.

Line 550. The System Manager sets the appropriate pin muxing for the HPS peripherals that were selected in Qsys.
Stepping into this code will reveal that it uses the pinmux_config.h that was generated by the bsp-editor based on
Qsys peripheral selections.

Line 587 - 598. Unfreeze the HPS I/0 banks.

Line 608. Enable UART printing. The first line of code is printed to Putty from here.
Line 638. SDRAM Memory Manager initialization.

Line 647. SDRAM Calibration.

Line 730 - 747. Setup and enable exceptions.

Run the preloader code

e Press the the F7 key to step out of the spl_board_init function

e Examine the PUTTY console. You should see the following

SoCKit SW Lab Instructions, Version 16.0 43

N\OW /AVOERYA, Five Years Out

Generate, Build and Run the Preloader

"B COM6- PuTTY =@

e Press the F8 (Continue key) to get to the breakpoint at line 245.

Read the following paragraph but DO NOT implement

The next logical step would be to insert the SD Card and press F8. The preloader would attempt to load U-Boot from the SD
card. It would first transition from running code out of On-chip RAM on the HPS to the DDR3 memory. If successful, you
would see the system boot U-Boot and Linux. Any instability in this process would possibly point towards memory timing
issues. Tuning of the memory timing in Qsys would be potentially required to resolve this.

However, we will not do this since Module 4 requires DS-5 to still be connected to the target.

CONGRATULATIONS!!

You have generated, built and run the SoC preloader.

SoCKit SW Lab Instructions, Version 16.0 44

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

MODULE 4: Validating the FPGA Peripherals from the Hard Processor System (HPS)

It is important to understand how the HPS and FPGA systems are combined into a common address map as seen by the ARM
Cortex A-9 MPU.

First, examine the memory map of the SoC as seen by the Cortex A-9 MPU. FPGA slaves connected to the high bandwidth
HPS2FPGA bridge are mapped starting at 0xC000 0000 (3GB). The on-chip RAM is connected to this bridge. This bridge has a
span of 960MB.

The HPS peripherals are mapped at 0xFCO0 0000 with a 64MB address span.

The SysID, PIO LED, PIO Button, and PIO DIPSW FPGA slaves are all connected to the low bandwidth LWHPS2FPGA bridge. This
bridge is mapped within the HPS peripherals span starting at 0xFF20 0000. The span of this region is 2MB since it is only
required for control and status access.

HPS Address Space Relationships

4GB
Lightweight | Peripheral Region
Hard Processor HSP2FPGA LWHPS2FPGA FPGAZHPS g gr_- P 9
o [l il S FPGA
FPGA fabric Slaves FPGA
spD [S] Slaves
POLED [S] Region
H PIO Button [S] =] Vit STAGH 3GB
PIO DIPSW [S] =
—— 2GB
SDRAM
M .
Interrupt Capturer JTAG | s » TG TAF Window
Master | rtern: ot 1 sy
—-1GB
hps_0.h2f_Iw_axi_master
sysid_gsys.control_slave 0x0001_0000 — 0x0001_0007
hps_0.f2h_axi_slave
intr_capturer_0.avalon_slave_0 0GB
itag_uart.avalon_jtag_slave 0x0002_0000 — 0x0002_0007
button_pio.s1 0x0001_00cO — 0Ox0001_0OO0cf MPU
dipsw_pio.s1 0x0001_0080 - 0x0001_008E
led_pio.s1 0x0001_0040 - 0x0001_005%

The offset addresses of the FPGA slave peripherals relative to the base of the LWHPS2FPGA bridge are shown above.

For example, the LWHPS2FPGA bridge is mapped at 0xFF20 0000. The LED PIO will be offset from that base by 0x0001 0040.
The resulting address for the LED PIO is 0xFF21 0040.

SoCKit SW Lab Instructions, Version 16.0 45

NN\OW AO[ERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.1

Validate the FPGA Peripherals from DS-5

Use the DS-5 Debug perspective Register tab to manually peek and poke the control, status, and data registers of the FPGA

peripherals that were defined in Qsys.

Use the Registers tab to access the FPGA peripherals.

The registers tab can be used to address all memory mapped entities within the HPS and the FPGA. It is a convenient

way to validate newly created FPGA peripherals.

Select the Registers tab. Press the & expander adjacent to the Peripherals field to see a complete list. If the

Peripherals registers are not visible, you might need to add them using the Browse button.

(9= Variables 9 Breakpoints %Y Expressions () Functions

=
& G

An incomplete list of peripherals is

=

2, Linked: spl~

Name Value Size |Access
Core 47 of 47 registers
Peripherals 2,767 of 2,767 registers
' N
oo Add Register QEU&J

& Core
& CP15
& VFP
(= NEON

(= Peripherals 3

Browse...

shown below. The peripherals that were added to the FPGA in the Qsys system are listed

as altera_avalon_<peripheral_name>. All other listings are standard HPS peripherals.

SoCKit SW Lab Instructions, Version 16.0

N\ROW

ALTERAW

(= acpidmap

== can(

= canl

(= clkrngr

= dap

= dmanonsecure
= dmasecure
= emacl

= emacl

46

Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

= stm

== sysmgr

== uartl

= uartl

== usb0

= usbl

[= altera_avalon_sysid_sysid_gsys_control_slave
[altera_avalon_pic_led_pio_sl

[= altera_avalon_pio_dipsw_pio_sl

= altera_avalon_pic_butten_pio_s1

B B B

(= altera_avalon_jtag_uart_jtag_uart_avalon_jtag_slave

The FPGA list of peripherals is dependent on what was added to the Qsys system. This information is passed to the DS-5 via
the SVD xml file that Qsys generates. Recall that it was referenced in the Debug configuration setup in the Files section.

|ﬁhdd peripheral description files from directory -

| Chaltera_trn\SoCKit_Materials_16.050CKit_SW _Lab_16.0%s0 c_system'synthesis

[File Systern... l | Workspace...

Handoff
files

&_4 Preloader @
&' Handoff Generator reloader
svd Debugger

=Q :
- DeviceTree f
.sopcinfo Generator Device Tree
For 5
SoC EDS Linue A
QL

Exercise the FPGA led_pio peripheral.

There are three bridges that connect the HPS and FPGA portion of the SoC. Two of them are meant for high
bandwidth data transactions (HPS2FPGA and FPGA2HPS). There is a third bridge (LWHPS2FPGA) that is intended as a
control and status path for the HPS into the FPGA. This bridge allows the HPS to separately control low bandwidth
FPGA peripherals without interrupting the flow of data on the high bandwidth paths.

These bridges are by default left in a reset state after power on and must be removed from this state.

SoCKit SW Lab Instructions, Version 16.0 47

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

View the Bridge Reset Status within the Reset Manager

e Navigate to the rstmgr peripheral and press the expander.
e Locate the rstmgr_brgmodrst register.

e Take note of its value

EF = rstmgr
@ rstmgr_stat Bx0ERBREED
@ rstmgr_ctrl Bx22110010
@ rstmgr_counts BxBEBEABER
@ rstrgr_mpumodrst BxBEHBBBE2
@ rstmgr_permodrst BxBL3AEBLS
@ rstmgr_per2modrst BxBERBBEFF
=+ @ rstmgr_brgmodrst Bx22020000

When the preloader ran, it detected that the FPGA was configured and thus released all three bridges from reset.
You are now able to access the FPGA peripherals.

Expand the LED_PIO peripheral

The programming model for the LED PIO can be found in Chapter 12 of the Embedded Peripherals Users Guide.

The PIO is four bits. Each output bit is connected to an LED. A bit value of one will turn the LED on and a value of zero
will turn it off. The FPGA LEDs are located near the Altera and Linear Technology logos.

e Navigate to the altera_avalon_pio_led_pio_s1 peripheral and press the expander .
e Locate the altera_avalon_pio_led_pio_s1_DATA register.

e Type Fin the data field to turn all the LEDs on.

e Type 0in the data field to turn all the LEDs off.

e Typel, 2,4, or8toturnindividual LEDs on.

=+ (= altera_avalon_pio_led_pio_sl
@ altera_avalon_pio_led_pio_sl_DATA BxepepaeRe 32 RAW

SoCKit SW Lab Instructions, Version 16.0 48

NN\OW AO[ERYA, Five Years Out

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf

Validating the FPGA Peripherals from the Hard Processor System (HPS)

Use the HPS GPIO peripheral to turn on the HPS LEDs.

It also is possible to communicate with all HPS peripherals via the Registers tab. Four HPS LEDs are connected to
GPIO pins [56..53] . These map to bits [27..24] in HPS register gpiol. The four HPS LEDs are located to the left of the
four FPGA LEDs.

D13 A LEDE
HoS LEDD s, 14 D12 A LEDE L
E23 HPS LED3 s — : »
GPIO56 C24 HPS LEDZ s [E L Al .ff LEDE |
SPloo [ez HPS_LED1 Sl b0y icon |
orons |A2A HPS LEDQ 1

e Navigate to the gpiol peripheral and press the expander.

e Locate the gpiol_gpio_swporta_ddr register. This is the data direction register. A gpio bit is an output if its
corresponding ddr bit is set to a one. Set the seventh nibble to an F (refer to the figure below). All four GPIO
connected to the LEDs are now outputs.

e Locate the gpiol_gpio_swporta_dr register. This is the data register. Change the data in the seventh nibble of the
data register to turn the LEDs on or off.

e Type 0in the data field to turn all the LEDs off.

e Type Fin the data field to turn all the LEDs on.

e Typel, 2,4, or8toturnindividual LEDs on.

= (= gpiol
+ @ gpiol_gpio_swporta_dr 2x20e0e0eo
+ @ gpiol_gpio_swporta_ddr exe®aeeeee

For more information on the GPIO, refer to the General-Purpose I/O Interface.
For more information on the HPS memory map refer to Address Map information for the HPS

e Stop. Do NOT turn off the power. You MUST first disconnect the DS-5 from the target and then remove all
connections for a clean session termination.

e Pressthe = | % | ke~ 2%~ | = @ % . o0 "Disconnect from Target" button.

o Pressthe B | %8 % & % | v | "Remove Connection" button.

e Exit DS-5 by using File --> Exit.

SoCKit SW Lab Instructions, Version 16.0 49

NN\OW AO[ERYA, Five Years Out

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/cv_5v4.pdf?GSA_pos=3&WT.oss_r=1&WT.oss=hps%252520gpio
http://wl.altera.com/literature/hb/cyclone-v/hps.html

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.2 Validate the FPGA Peripherals from a simple Linux Application

This section continues the philosophy of incrementally validating the FPGA peripherals that were added to the HPS in Qsys.
The FPGA peripherals will now be validated from within the Linux operating system by way of a simple Linux application.

Linux has a virtual addressing scheme, so the application has to acquire a virtual address that represents the physical
beginning of the HPS peripheral space. A simple application, "led_blink" was created as an example of how to validate FPGA
peripherals from within a Linux application. An examination of the code below shows the mapping function implemented.

#include "socal/alt gpioc.h"
#include "hps_0.h"

#define HW_REGS BASE (ALT_STM CFST)
#define HW _REGS SPAN (0x04000000)
$define HW_REGS MASK (HW REGS_SFAN - 1)

int main{) {

wvoid #*virtual base;
int f£d;

int loop_count;

int led direction;
uint® t led state;

'/ map the address space for) registers into user space S0 we can interact with them.
S we'll actually map in the e CS5R span of the HPS since we want to access various registers within that span
if((fd = gpen("/dev/mem", (O_RDWR | O_SY¥YNC)})}) == -1) {
printfi ;E?RCR: could not open \"/dev/mem\"...\n"); Provide the mmap fu nction W|th
return H
HPS peripheral base and span and
virtual base = mmap(NULL, HW REGS S5PAN, (PROT_READ | PROT WRITE), MAP SHARED, fd, HW _REGS BASE); It returns a Virtual mapplng Use
. . this virtual base to address any
if(wvirtuwal base == MAF FAILED) { .))
printf("ERROR: mmap() failed...\n" }; peripherals within the HPS space
close(£d): .
return(1) including those mapped through

the LWHPS2FPGA bridge.

/f initialize the LEDs

/f set the direction of the HPS GPIC1 bits attached to LEDs to output

alt setbits word((virtual base + ((uint32 t) (ALT GPIOl SWPORTA DDR ADDR) & (uwint32 t) (HW REGS MASK))), Ox0000F00Q };
/{ set the valus of the HPS GPIC1 bits attached to LEDs to CHE, turn OFF the LEDs
alt_setbits word((virtual base + ((uint32 t) (ALT GPIO1 SWPORTA DR_ADDR) & (uint32_t) (EW_REGS MASK))), OxQ000F000Q);
/f set the wvalue of the FPGA PIC bits attached to LEDs to CNE, CFF the LEDs

alt setbits word((virtual base + ((uint32 t) (DRRPYeN Bl + LED PIO BASE) & (uint32 t) (HW_REGS MASK))), OxQ0000QOF);:

Once the mapping function has been called, the virtual base is used to manipulate HPS and FPGA LEDs via their respective
PIOs. The memory map of the FPGA peripherals is provided in a header file (hps_0.h) that was generated by a utility called
sopc-create-header. The alt_setbits and alt_clr_bits functions are used to turn the LEDs on and off.

This application can either be built in a Cygwin shell in Windows or on a Linux Host. In this section you will build this

application within the Cygwin shell, secure copy it to the target via Ethernet and then execute it.

1. Connect the Linux target (SoCKit) to the laptop via Ethernet

Since there is no router available, you will directly connect the laptop to the target using the provided Ethernet cable.

SoCKit SW Lab Instructions, Version 16.0 50

NN\OW AO[ERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

We will provide the laptop and the target with fixed IP addresses. There is no need for a (Rx/Tx) crossover adaptor since most
modern Ethernet PHYs can perform the crossover internally.

Configure the laptop network adaptor.

e Type ncpa.cpl in the Windows search field. Press enter. Select the appropriate ethernet adaptor. Right click and
select Properties.

j' 2 Search Everywhere

| nepa.cpl|

|
- |:> L_. Local Area Connection

== Unidentified network

. fe G Intel(R) 82577LM Gigabit Network...
101

e Select Internet Protocol Ver5|on 4. Press Propertles Setup the IP address as shown below (192.168.2.13). Press OK.

L Local Area Connection Properties @
Networiding | Sharing Internet Protocol Version 4 (TCP/IPvd) Properties @
Connect using: General
‘l'-.r Intel{R) 82577LM Gigabit Netwerk Connection You can get IP settings assigned automatically if your network supports

this capability. Otherwise, you need to ask your network administrator

for the appropriate IP settings.

This connection uses the following items:

matically

1B1305 Packet Scheduler B
v gFle and Printer Sharing for Microsoft Networks 1P address: 92 w65, 2 . 13
i HTC NDIS Protocol Dnver S
i Intemet Protocol Vers Subnet mask: 255, 255 . .0
3 Default gateway:
e ———
i Link-Layer Topalogy Uiscovery Mapper |70 Driver | 4 |:>
i Link-Layer Topology Discovery Responder - Obtain DNS server address automatically
1 Ll > (@ Useg the following DNS server addresses:

Description Alternate DNS server:
Transmission Control Protocol/Intemet Protocol. The default
wide area network protocal that provides communication
across diverse interconnected networkcs. [valiate settngs upon ext
|
o e
SoCKit SW Lab Instructions, Version 16.0 51

NN\OW AO[ERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Connect to the Linux target (SoCKit).

° Open PUTTY. Set it to Serial, 115200, COMxx.
r N
@ PuTTY Configuration &
Category:
=} Session Basic options for your PuTTY session
Logging Specify the destination you want to connect to
=)- Terminal L 5
Ceibosd 2enial line peed
Bell COM15 115200
Features Connection type:
=} Window Raw Telnet Rlogin SSH @ Seral
}B\o;f‘earance Load, save or delete a stored session
aviour
Translation Saved Sessions
Selection Amow SoCKit
Colours [Defautt Settings |
=) Connection
G
roxy
Rlogin
+- SSH =
Setil Close window on exit:
Always Never ©) Only on clean exit
(L open J[Coce]

3. Warm reset and boot Linux

e Insert the SD Card.

e Pressthe WARM_RST button. It is located on the bottom left corner of the SoCKit. See the image below.
|
|
|
\
e Wait for Linux to boot. Press enter at the terminal prompt and login as root.
[]

Create a password. It will be required later for the SCP (secure copy function). Type passwd and enter root when
prompted.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

52

Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

£P COMIS - PuTTY (= [50 [|

4. Assign the target board a fixed IP address

o At the prompt type ifconfig eth0 192.168.2.12 up. Press enter.

#P COMIS - PuTTY (=] = S]]

e Pingthe host. Type ping 192.168.2.13. Press enter. Press Ctrl-C to abort ping.

& COMI1S - PuTTY

5. Halt the 'scroll_server' LED process and clear the LEDs
e Type./init_leds.sh. Press enter
6. Build the "led_blink" example

e Open an Embedded Shell
e (D to c:\altera_trn\SoCKit_Materials_16.0\SoCKit\SoCKit_SW_lab_16.0\software\led_blink

SoCKit SW Lab Instructions, Version 16.0 53

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

e Type ./build_script.sh and press enter.

“huild_script.sh
+ arm—linux—gnueahihf—-gce —g —080 —Werror —Wall -IC:saltera_lites15.1. emhs

t/altera_lites15.1/embeddedsipsalterashpssaltera_hps-hwlibsinclude zoc_c

7. Use SCP to copy the executable to the target via Ethernet.

e Type scp led_blink root@192.168.2.12:/home/root. Press enter. This will take the local file "led_blink" and securely
copy it to the target at 192.168.2.12. It will place it in the /home/root folder.
e When prompted, type yes. Press enter.

e When prompted for a password, type root. Press enter.

I$ scp led_hlink rootP1?2.168.2.12: home root
The anthenticity of host '192_168.2_12 {192_168_2.12>" can’'t he estabhlished.
ECDEA key fingerprint is a2:56:3e:?8:h?:cf:fd-ed:di:d1:98:ab:?d:6%:cd:%a.

Are vou sure you want to continue connecting f{ves snol)? _

e Navigate back to the PuTTY console.
e Typels at the prompt.
e Change the permissions of led_blink to make it executable for all users. At the prompt type chmod 555 led_blink.

Press Enter.

8. Execute the led_blink application.

e Type ./led_blink at the PuTTY console prompt. Press Enter. The LEDs will blink for a few seconds.

£ COMLS - PuTTY = ===

SoCKit SW Lab Instructions, Version 16.0 54

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

4.3 Validate the FPGA Peripherals using Linux Device Drivers (Modules)

In this module you will run a few shell scripts. These scripts will turn the FPGA and HPS LEDs on and off. The difference in this
exercise is that there is no explicit reference to memory map addresses or bit locations. You will also install a module that
registers an interrupt and prints a message when that interrupt occurs.

1. Examine the installed devices

All the drivers associated with LEDs and GPIOs are loaded with the Linux kernel and when the gsrd_init.sh script is
loaded as part of the system initialization at boot up.

e Bring the PUTTY console to the foreground. Type c¢d ~ . Press Enter.
e Typels. Press Enter. Examine the directory contents.

g8 COMI5 - PuTTY = | 5

e Type cd /sys/class/leds. Press enter. Type Is. Press enter.
Notice how each LED (HPS or FPGA) now appears as an individual device. Take note of the naming syntax.

e Typecd™. Pressenter.

£2 COM15 - PuTTY = | (5

2. Run the led_blink_devices script
This script will blink all the FPGA and HPS LEDs.

e Type cat led_blink_devices.sh. Press Enter. Examine the contents of the script.

SoCKit SW Lab Instructions, Version 16.0 55

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

Notice that the echo command is being used to pipe data to each individual LED (FPGA & HPS). There is no knowledge of the

custom FPGA hardware that was created using Qsys. There is also no knowledge of the custom GPIO assignments that were

made for the HPS LEDs. In the next section you will examine how the driver gets this information from the Qsys system tool.
e Type./led_blink_devices.sh. Press Enter.

3. Detect the user pushbutton

Install the gpio_interrupt module. The module is installed using the following syntax:

modprobe gpio_interrupt gpio_number=<n>

GPIO numbers are automatically assigned by the kernel based on device tree entries. The GPIO number must be correlated
with its associated gpiochip in order to determine which interrupt is being asserted.

Examine all the available gpiochips that are registered by the kernel.

e Typels /sys/class/gpio at the prompt. Press Enter.

£B COMIS - PuTTY =] 5 |

Match the label of the GPIO chip to the address of push button and DIP switch in device tree.

e Type cat /sys/class/gpio/gpiochip169/label at the prompt. Press Enter

&3 COMIS - PuTTY =] D]

SoCKit SW Lab Instructions, Version 16.0 56

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

| = button_pio ~ PIO (Parallel 1/0) E 1L [&
dk Clock Input clk_0
reset Reset Input [ck]

s1 Avalon Memory Mapped Slave [ck] P
external_connection Conduit button_pio_external_co...

Note that the offset address of the push button (button_pio) in the FPGA match those of gpiochip169. A match has been
found. Later builds of the kernel can rearrange the gpiochip numbers and their associated peripherals. If you do not see a
match between the button_pio memory map address and gpiochip169 then retry the step above with different gpiochip

numbers that were listed in the earlier step. Once a match is found substitute that gpiochip number instead in the steps
below

Register gpiochip169 with the gpio_interrupt module in order to detect any push button interrupts. Since there are two
pushbutton inputs in the button_pio component, gpio_numbers 169 and 170 are allocated to gpiochip169.

e Type modprobe gpio_interrupt gpio_number=169 at the prompt. Press enter.

[&8 com1s - puTTy SRS

modprobe gpio_interrupt gpio_number=16%9 -

o
JLE
—d
B:~g

e Press the the pushbutton 0 on the SoCKit board to activate the interrupt

- 0\ a1
=5 lgoﬂ‘.‘

[&8 coM1S - puTTY ESEITS)

SoCKit SW Lab Instructions, Version 16.0 57

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

Remove the gpio_interrupt.

e Type rmmod gpio_interrupt at the prompt. Press Enter.

[&8 coM1S - puTTY ESEITS)

rmmod gpi O _interrupt

£
i
£
i

Examine the Device Tree Blob (DTB)

This section focuses on the flow of system information from the .sopcinfo file to the Device Tree.

Handoff
files

T

& Preloader

o

\¢ Handoff Generator E Preloader 1
SV, Debugger

=Q :
_Q__ DeviceTree __.F::ﬂ
.sopcinfo Generator Device Tree
For -
SoC EDS H Linux A
[y

The Device Tree standard specifies hardware connectivity so that the Linux kernel can boot up correctly. For more on the
device tree click on this link: Devicetree.org

The diagram below shows the detailed connection from the Qsys system definition file (.sopcinfo) to the Device Tree Source
(DTS) file, which is readable text, and finally to the Device Tree Blob (DTB) which is a binary format. The DTB is placed in the
FAT partition of the SD card and is read by U-Boot and placed in DDR3 memory. It is read by the Linux kernel at boot time.

SoCKit SW Lab Instructions, Version 16.0 58

N\OW /AVOERYA, Five Years Out

http://devicetree.org/Main_Page

Validating the FPGA Peripherals from the Hard Processor System (HPS)

HW project Directory

iswinfo

Device
Tree

| hps_5¢sx120f.qsys
hps_Scsx120f.sopcinfo

2 hps_Sesx120f_svd.aml
hps_cycloneV_5csx120f.qpf
' hps_cycloneV_5csx120f.qsf

Generator

| hps_cycloneV_5csx120f sof

== (|l|al“l5.l|'l|

Board/User Info

1. Examine the Device Tree Source (DTS)

Examine a section of the Device Tree Source file for the SoCKit. This
section describes the LEDs connected to the FPGA and to the HPS.

As seen in Module 4.3, a high level device access requires no specific
hardware knowledge of that device. That specific hardware
knowledge is passed from the HW design via the .sopcinfo file and
placed in the DTS file. The kernel reads that information and passes
it to the specific module (device driver).

Examine fpga_led3 and hps_led3. The DTS entry for fpga_led3
specifies that it is connected the LED_PIO peripheral on bit 3.
LED_PIO was added to the system using Qsys in the HW lab section.
The base address offset for the LED_PIO is also specified in the DTS.

In the case of hps_led3, the DTS indicates that it is connected to the
GPIO pin that is driven by GPIO register 1 on bit 24. The base address
offset for GPIO register 1 is also specified in the DTS.

Automatic generation of the DTS is now supported in Quartus Prime

16.0.

SoCKit SW Lab Instructions, Version 16.0

N\N\OW AO[ERA,

SD/MMC

DTS
Compiler

Uinux file system

(FPGA POF/SOF files, user data
can be stored in EXT2 fiesystem)

Unused

Operatng System (Lnux ulmage)
Device Tree Blob (Linux)

(FPGA POF/SOF files, user data
«can be stored in FAT filesystem)

Space due to oyfinder setup

Booticader (U-Boot)
environment setting *

Master Boot Record (MBR)

Raw Partition EXT2 partition (Linux)

Custom Partition A2 FAT partition

soc_system.dts

led=s {

compatible = "gpio-leds";

fpgal {
gpios = <&led pio 0 1>;
label = "fpga led0O";

bi

fpgal {
gpios = <&led pio 1 1>;
label = "fpga_ledl";

bi

fpga2 {
gpios = <&led pio 2 1>;
label = "fpga led2";

bi

fpga3 {
gpios = <&led piolzl 1>;

bi

hp=s0 {
gpios = <thps_ 0_gpiol 27 1>;
label = "hps led0";

bi

hpsl {
gpios = <ghps 0 gpiol 26 1>;
label = "hps_ledl";

bi

hp=2 |
gpios = <&hps 0 gpiol 25 1>;
label = "hps led2";

bi

hp=s3 {
gpios = <ghps 0|gpiol 24 (1>;
label =|"hps_led3";

bi

59
Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Examine the Device Tree Blob (DTB) in U-Boot

Reboot the SoCKit and halt U-Boot before it loads Linux.

e Type poweroff. Press Enter. Wait until you see System halted.
e Press the WARM_RST button and then press any key (within 5 seconds) to halt U-Boot autoboot. The WARM_RST
button is located on the bottom left corner of the SoCKit. vSee the image below.

Examine the contents of the SD card FAT partition.

e Type fatls mmc 0:1. Press enter. This displays the contents of the fat partition on the SD card.

SoCKit SW Lab Instructions, Version 16.0 60

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

Load the Device Tree Blob into Memory.

o Type fatload mmc 0:1 0x100 soc_system.dtb. Press enter. This loads the DTB from the SD card and places it in DDR3
memory at 0x100.

Examine the contents of the Device Tree Blob.

e Type fdt addr 0x100. Press enter. This assigns 0x100 to the fdt system variable addr.

e Type fdt print. Press enter. This reads the binary DTB, converts it to clear text, and displays it. Wait for the text to
stop scrolling. The content on the display will now look familiar. This is exactly what the kernel will see butin a
binary format.

&P comis - puTTy (= [s

SoCKit SW Lab Instructions, Version 16.0 61

N\OW /AVOERYA, Five Years Out

Validating the FPGA Peripherals from the Hard Processor System (HPS)

2. Examine the Device Tree in Linux
The device tree can also be viewed from within Linux.

e Type bootd at the u-boot prompt. This will boot Linux from the SD card.
e login as root.

e Typels /proc/device-tree/sopc@0. Press enter.

£P COM15 - PuTTY = | 5

CONGRATULATIONS!
You have validated the FPGA peripherals.

For more detailed information on how to build u-boot and Linux for the SoCKit please visit the Golden System Reference
Design (GSRD) page for the SoCKit on rocketboards.org

SoCKit SW Lab Instructions, Version 16.0 62

N\OW /AVOERYA, Five Years Out

http://www.rocketboards.org/foswiki/Documentation/GSRDUserManualArrowSoCKitEdition

Additional DS-5 training

MODULE 5: Additional DS-5 training

The existing module has been deprecated and replaced with the following training available on Rocketboards

This tutorial is an introduction to the features of DS™-5 Debugger. The board has an Altera Cyclone V SoC, which has an FPGA
as well as a dual core Cortex®-A9 processor. The tutorial demonstrates DS-5 features including bare metal debug, Linux kernel
debug, trace and operating system awareness. In addition it teaches how to setup an FPGA adaptive debugging to control

registers on the FPGA logic as well as cross triggering between the debugger and the Quartus SignalTap® Il logic analyzer. The
final section of the tutorial demonstrates the use of ARM Streamline for performance analyses and source code optimization.

Click on the link below to access the lab manual.

DS-5 SoCKit Workshop

SoCKit SW Lab Instructions, Version 16.0 63

NN\OW AO[ERYA, Five Years Out

https://rocketboards.org/foswiki/view/Documentation/SoC
https://rocketboards.org/foswiki/edit/Documentation/SignalTap?topicparent=Documentation.DS5AlteraEditionSoCKitTutorial
https://s3.amazonaws.com/rocketboards/DS-5+SoCkit+WorkshopUSA.pdf

Taking the Next Step

MODULE 6: Taking the Next Step
Altera has a number of resources available to assist you in further product development at www.altera.com/embedded.

Some of the resources available are:

Visit the rocketboards.org community web site

http://www.rocketboards.org/foswiki

E Start here *

http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition

Arrow SoCKit Evaluation Board support site
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard

Altera SoC Development Board support site
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard

Get more information about the SoC HPS

Hard Processor System Technical Reference Manual
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

Get more information about the SoC Embedded Design Tools

Embedded Software for the Cortex-A9 MPCore Processor
https://www.altera.com/products/soc/tools_and_software.html

http://www.alterawiki.com/wiki/SoCEDSGettingStarted

Get additional SoC training (discounted from $695 per course to $99 for workshop attendees)

Designing with an ARM based SoC
http://wl.altera.com/education/training/courses/ISOC101

Developing Software for an ARM based SoC

http://wl.altera.com/education/training/courses/ISOC102

SoCKit SW Lab Instructions, Version 16.0 64

N\OW /AVOERYA, Five Years Out

http://www.altera.com/embedded
http://www.rocketboards.org/foswiki
http://rocketboards.org/foswiki/Documentation/GSRDArrowSoCKitEdition
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
https://www.altera.com/products/soc/tools_and_software.html

Taking the Next Step

For all resources visit www.altera.com/embedded

SoCKit SW Lab Instructions, Version 16.0 65

N\OW /AVOERYA, Five Years Out

http://www.altera.com/embedded

